航天返回与遥感
航天返迴與遙感
항천반회여요감
SPACECRAFT RECOVERY & REMOTE SENSING
2014年
6期
83-90
,共8页
无参考图像质量评价%失真分类%支持向量机%人眼视觉特性%遥感图像
無參攷圖像質量評價%失真分類%支持嚮量機%人眼視覺特性%遙感圖像
무삼고도상질량평개%실진분류%지지향량궤%인안시각특성%요감도상
sno-reference image quality assessment%distortion classification%support vector machine%human visual perception%remote sensing image
针对遥感图像主观评价方法的低效率以及常用客观评价方法无法充分考虑人眼对图像的感知特性的问题,文章提出了一种基于支持向量机的无参考遥感图像质量(quality)评价方法。首先建立遥感图像主观评价库,然后在不需要图像失真信息的基础上,利用支持向量机(SVM)将图像的失真类型分为三类,并对每类进行单项评价,再通过加权得到遥感图像的总评分,最后将本文方法、信噪比与信息熵的评价结果回归到主观评价空间并进行对比。实验证明,文章所提方法能客观地评价遥感图像的质量,且优于信噪比和信息熵两种质量评价方法,其结果与人眼视觉感受相符。
針對遙感圖像主觀評價方法的低效率以及常用客觀評價方法無法充分攷慮人眼對圖像的感知特性的問題,文章提齣瞭一種基于支持嚮量機的無參攷遙感圖像質量(quality)評價方法。首先建立遙感圖像主觀評價庫,然後在不需要圖像失真信息的基礎上,利用支持嚮量機(SVM)將圖像的失真類型分為三類,併對每類進行單項評價,再通過加權得到遙感圖像的總評分,最後將本文方法、信譟比與信息熵的評價結果迴歸到主觀評價空間併進行對比。實驗證明,文章所提方法能客觀地評價遙感圖像的質量,且優于信譟比和信息熵兩種質量評價方法,其結果與人眼視覺感受相符。
침대요감도상주관평개방법적저효솔이급상용객관평개방법무법충분고필인안대도상적감지특성적문제,문장제출료일충기우지지향량궤적무삼고요감도상질량(quality)평개방법。수선건립요감도상주관평개고,연후재불수요도상실진신식적기출상,이용지지향량궤(SVM)장도상적실진류형분위삼류,병대매류진행단항평개,재통과가권득도요감도상적총평분,최후장본문방법、신조비여신식적적평개결과회귀도주관평개공간병진행대비。실험증명,문장소제방법능객관지평개요감도상적질량,차우우신조비화신식적량충질량평개방법,기결과여인안시각감수상부。
In view of low efficiency of subjective assessment method for remote sensing image and lack of full consideration of human eye perception of common objective assessment method for the image features, this paper proposes a no-reference remote sensing image quality assessment method based on support vector machine. Firstly, a subjective assessment library for remote sensing image is established, and then,without image distortion information, we use support vector machine to classify image distortion into three categories, and compute individual evaluation for each category. The final remote sensing image quality is obtained by probability-weighted summation. Finally, the results of the method proposed by the paper, the signal-to-noise ratio and the information entropy are regressed back to the subjective assessment space and compared. In the paper, the proposed method is demonstrated a good objective assessment method of remote sensing image quality, and this method is superior to the assessment methods of signal-to-noise ratio and the information entropy, whose consistent with human visual experience.