燃料化学学报
燃料化學學報
연료화학학보
JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY
2014年
12期
1447-1454
,共8页
孔志坚%王成%丁正南%陈银飞%张泽凯
孔誌堅%王成%丁正南%陳銀飛%張澤凱
공지견%왕성%정정남%진은비%장택개
Li%LiMn2O4%MnO2%选择性催化还原%非选择性氧化
Li%LiMn2O4%MnO2%選擇性催化還原%非選擇性氧化
Li%LiMn2O4%MnO2%선택성최화환원%비선택성양화
Li%LiMn2 O4%MnO2%selective catalytic reduction%unselective oxidation
采用高温固相反应法、Pechini合成方法和柠檬酸配位法,制备了系列锂锰复合氧化物LiMn2 O4催化剂,应用于NH3-SCR反应,并与固相反应法合成的MnO2进行了比较。采用N2吸附-脱附、扫描电镜、X射线衍射、H2程序升温还原、NH3程序升温脱附、NO程序升温脱附和X射线光电子能谱对LiMn2 O4催化剂进行表征。结果表明,引入Li有利于提高锰基催化剂的SCR活性和抗硫性。 Pechini法制备LiMn2 O4的NO转化率可在130~260℃达到90%以上;固相反应法制备LiMn2 O4的NO转化率大于90%的温度为90~310℃;MnO2的温度窗口则仅为140~280℃。与MnO2相比,引入Li可形成LiMn2 O4结构,因此,催化剂中更多的锰离子保持在相对较低的价态Mn3+,并调整表面活性氧含量;同时,Li的存在调变了LiMn2 O4表面的酸位,从而减少高温下MnO2表面容易发生的NH3非选择性氧化,改善其催化NH3-SCR反应的温度窗口,也增强了抗硫性。
採用高溫固相反應法、Pechini閤成方法和檸檬痠配位法,製備瞭繫列鋰錳複閤氧化物LiMn2 O4催化劑,應用于NH3-SCR反應,併與固相反應法閤成的MnO2進行瞭比較。採用N2吸附-脫附、掃描電鏡、X射線衍射、H2程序升溫還原、NH3程序升溫脫附、NO程序升溫脫附和X射線光電子能譜對LiMn2 O4催化劑進行錶徵。結果錶明,引入Li有利于提高錳基催化劑的SCR活性和抗硫性。 Pechini法製備LiMn2 O4的NO轉化率可在130~260℃達到90%以上;固相反應法製備LiMn2 O4的NO轉化率大于90%的溫度為90~310℃;MnO2的溫度窗口則僅為140~280℃。與MnO2相比,引入Li可形成LiMn2 O4結構,因此,催化劑中更多的錳離子保持在相對較低的價態Mn3+,併調整錶麵活性氧含量;同時,Li的存在調變瞭LiMn2 O4錶麵的痠位,從而減少高溫下MnO2錶麵容易髮生的NH3非選擇性氧化,改善其催化NH3-SCR反應的溫度窗口,也增彊瞭抗硫性。
채용고온고상반응법、Pechini합성방법화저몽산배위법,제비료계렬리맹복합양화물LiMn2 O4최화제,응용우NH3-SCR반응,병여고상반응법합성적MnO2진행료비교。채용N2흡부-탈부、소묘전경、X사선연사、H2정서승온환원、NH3정서승온탈부、NO정서승온탈부화X사선광전자능보대LiMn2 O4최화제진행표정。결과표명,인입Li유리우제고맹기최화제적SCR활성화항류성。 Pechini법제비LiMn2 O4적NO전화솔가재130~260℃체도90%이상;고상반응법제비LiMn2 O4적NO전화솔대우90%적온도위90~310℃;MnO2적온도창구칙부위140~280℃。여MnO2상비,인입Li가형성LiMn2 O4결구,인차,최화제중경다적맹리자보지재상대교저적개태Mn3+,병조정표면활성양함량;동시,Li적존재조변료LiMn2 O4표면적산위,종이감소고온하MnO2표면용역발생적NH3비선택성양화,개선기최화NH3-SCR반응적온도창구,야증강료항류성。
LiMn2 O4 prepared by high temperature solid state reaction, pechini, and cirt ic acid coordination methods was applied in selecit ve catalytic reduction (S CR ) of NO with NH3 . MnO2 prepared by high tem perta ure solid state reaction method and the activity was tested as a comparsion.T he catalysts were characterized by N2 asd orption-desorptoi n, scanning electron microscopy, X-ray dfi fraction, H2 temperature-program med rde uction, NH3 temperature-pr ogrammed desorption, NO temperature-programmed desorption,a nd X-ray photoelectron spectroscopy. The results sho wed that high-temperature activiyt of SCR were im rp oved after teh introduction of Li into MnO2 .NO conv ersion on the LiMn2 O4 per ap red by pechinim ethod was above 90%in the range of 130~260℃;NO convre soi n on the LiMn2 O4b y high temperature solid state reatc ion mte hod could be kept ba ove 90%in the ar nge of 90~310℃;while the temep rature window of MnO2 was only 140~280℃. Comparedw ith MnO2 , LiMn2 O4 crystal structure not only keeps more manganese cait ons at a relatively low valence of Mn3+, but also adjusts us raf ec a cit veo xgy ne. Mae nwhile, the existence of Li adjusts surface-acid sites of LiMn2 O4 , thus alleviates the unes lce itv e ox dia toi nof NH3 in the high temperature, broadens the operating temperature window of NH3-SCR reaction, and improves the catalyst tolerance of SO2 .