汽车工程
汽車工程
기차공정
AUTOMOTIVE ENGINEERING
2014年
12期
1546-1550
,共5页
沈虹%赵红东%张玲玲%肖云魁%赵慧敏
瀋虹%趙紅東%張玲玲%肖雲魁%趙慧敏
침홍%조홍동%장령령%초운괴%조혜민
曲轴轴承%故障诊断%经验模式分解%Gabor变换
麯軸軸承%故障診斷%經驗模式分解%Gabor變換
곡축축승%고장진단%경험모식분해%Gabor변환
crankshaft bearing%fault diagnosis%empirical mode decomposition%Gabor transform
针对发动机振动信号的非平稳特点,提出了一种基于经验模态分解( EMD)和Gabor变换相结合的曲轴轴承故障特征提取新方法。通过EMD方法将发动机非稳态加速振动信号分解成多个本征模态函数( IMF),对与原信号相关性强的前4阶IMF分量进行Gabor变换,从各阶分量Gabor时频分布图的频带能量累加曲线中提取能够反映曲轴轴承磨损故障的频带能量作为故障特征参数。试验结果表明,该方法提取的故障特征参数能敏感地反映曲轴轴承的磨损状态,可作为诊断曲轴轴承故障的重要特征量。
針對髮動機振動信號的非平穩特點,提齣瞭一種基于經驗模態分解( EMD)和Gabor變換相結閤的麯軸軸承故障特徵提取新方法。通過EMD方法將髮動機非穩態加速振動信號分解成多箇本徵模態函數( IMF),對與原信號相關性彊的前4階IMF分量進行Gabor變換,從各階分量Gabor時頻分佈圖的頻帶能量纍加麯線中提取能夠反映麯軸軸承磨損故障的頻帶能量作為故障特徵參數。試驗結果錶明,該方法提取的故障特徵參數能敏感地反映麯軸軸承的磨損狀態,可作為診斷麯軸軸承故障的重要特徵量。
침대발동궤진동신호적비평은특점,제출료일충기우경험모태분해( EMD)화Gabor변환상결합적곡축축승고장특정제취신방법。통과EMD방법장발동궤비은태가속진동신호분해성다개본정모태함수( IMF),대여원신호상관성강적전4계IMF분량진행Gabor변환,종각계분량Gabor시빈분포도적빈대능량루가곡선중제취능구반영곡축축승마손고장적빈대능량작위고장특정삼수。시험결과표명,해방법제취적고장특정삼수능민감지반영곡축축승적마손상태,가작위진단곡축축승고장적중요특정량。
In view of the instability feature of engine vibration signals, a method based on the combination of empirical mode decomposition ( EMD) and Gabor transform is proposed to extract the fault features of crankshaft bearing. Firstly by using EMD technique the unstable acceleration vibration signals of engine are decomposed into a series of intrinsic mode functions ( IMFs) . Then Gabor transform is performed on the first 4 orders of IMF compo-nents having strong correlation with origin signals. Finally the frequency band energy, which well reflects the wear fault of crankshaft bearing, is extracted as fault characteristic parameter from the frequency band energy accumula-tion curve of Gabor time/frequency distribution graph for each IMF component. The test results indicate that the fault characteristic parameter extracted with the method proposed can sensitively reflect the wear states of crankshaft bearing and can be taken as the important characteristic quantity for the diagnosis of crankshaft bearing faults.