电子学报
電子學報
전자학보
ACTA ELECTRONICA SINICA
2014年
12期
2435-2441
,共7页
聚类%蜜蜂交配优化%粗糙集%K-means
聚類%蜜蜂交配優化%粗糙集%K-means
취류%밀봉교배우화%조조집%K-means
clustering%honey-bee mating optimization%rough set%K-means
K-means算法因简单、高速等特点而被广泛应用,但该算法仍然存在依赖于初始聚类中心、易陷入局部最优等缺陷。为此,提出了一种蜜蜂交配优化聚类算法。该算法利用密度和距离初始化蜂群,并将局部搜索能力较强的粗糙集聚类算法作为工蜂的一种编码,以增强算法的局部搜索能力,最后在迭代过程中不断引入随机种群,增加种群的多样性,提高算法的全局寻优能力。实验结果表明,该算法不仅能有效抑制早熟收敛,而且具有较强的稳定性,较好的聚类效果。
K-means算法因簡單、高速等特點而被廣汎應用,但該算法仍然存在依賴于初始聚類中心、易陷入跼部最優等缺陷。為此,提齣瞭一種蜜蜂交配優化聚類算法。該算法利用密度和距離初始化蜂群,併將跼部搜索能力較彊的粗糙集聚類算法作為工蜂的一種編碼,以增彊算法的跼部搜索能力,最後在迭代過程中不斷引入隨機種群,增加種群的多樣性,提高算法的全跼尋優能力。實驗結果錶明,該算法不僅能有效抑製早熟收斂,而且具有較彊的穩定性,較好的聚類效果。
K-means산법인간단、고속등특점이피엄범응용,단해산법잉연존재의뢰우초시취류중심、역함입국부최우등결함。위차,제출료일충밀봉교배우화취류산법。해산법이용밀도화거리초시화봉군,병장국부수색능력교강적조조집취류산법작위공봉적일충편마,이증강산법적국부수색능력,최후재질대과정중불단인입수궤충군,증가충군적다양성,제고산법적전국심우능력。실험결과표명,해산법불부능유효억제조숙수렴,이차구유교강적은정성,교호적취류효과。
K-means algorithm is the most widely used method due to its easy understanding and fast speed .However,this method has the disadvantage that the clustering results depend on the selection of the initial clustering center and it is easy to fall into local optimal .For this reason,this paper proposed a honey-bee mating optimization clustering algorithm .It generates initial swarm by density and distance,and regards rough set clustering algorithm which has strong local search ability as a code of the works to en-hance the local search ability of the algorithm .At last,in order to improve the diversity level of the swarm and the global optimiza-tion ability of the algorithm,random swarm population are introduced continuously in the iterative process .Our experiments show that the proposed algorithm not only can effectively suppress premature convergence,but also has strong stability and produces good clustering results .