电子学报
電子學報
전자학보
ACTA ELECTRONICA SINICA
2014年
12期
2386-2393
,共8页
杜海顺%张旭东%金勇%侯彦东
杜海順%張旭東%金勇%侯彥東
두해순%장욱동%금용%후언동
人脸图像识别%稀疏表示%低秩矩阵恢复%Gabor变换
人臉圖像識彆%稀疏錶示%低秩矩陣恢複%Gabor變換
인검도상식별%희소표시%저질구진회복%Gabor변환
face image recognition%sparse representation%low-rank matrix recovery%Gabor transformation
针对含光照、表情、姿态、遮挡等误差或被噪声污染的人脸图像的识别问题,本文提出一种基于Gabor低秩恢复稀疏表示分类的人脸图像识别方法。该方法首先用低秩矩阵恢复算法求得训练样本图像对应的误差图像;然后,对每一个训练样本图像及其对应的误差图像进行Gabor变换,得到相应的Gabor特征向量,并将这些Gabor特征向量组成一个Gabor特征字典;进而,计算测试样本图像Gabor特征向量在该Gabor特征字典下的稀疏表示系数,并用该稀疏表示系数和Gabor特征字典,对测试样本图像的Gabor特征向量进行类关联重构,同时计算相应的类关联重构误差。最后,根据测试样本图像Gabor特征向量的类关联重构误差,实现对测试样本图像的分类识别。在CMU PIE、Extend-ed Yale B和AR数据库上的实验结果表明,本文提出的人脸图像识别方法具有较高的识别率和较强的抗干扰能力。
針對含光照、錶情、姿態、遮擋等誤差或被譟聲汙染的人臉圖像的識彆問題,本文提齣一種基于Gabor低秩恢複稀疏錶示分類的人臉圖像識彆方法。該方法首先用低秩矩陣恢複算法求得訓練樣本圖像對應的誤差圖像;然後,對每一箇訓練樣本圖像及其對應的誤差圖像進行Gabor變換,得到相應的Gabor特徵嚮量,併將這些Gabor特徵嚮量組成一箇Gabor特徵字典;進而,計算測試樣本圖像Gabor特徵嚮量在該Gabor特徵字典下的稀疏錶示繫數,併用該稀疏錶示繫數和Gabor特徵字典,對測試樣本圖像的Gabor特徵嚮量進行類關聯重構,同時計算相應的類關聯重構誤差。最後,根據測試樣本圖像Gabor特徵嚮量的類關聯重構誤差,實現對測試樣本圖像的分類識彆。在CMU PIE、Extend-ed Yale B和AR數據庫上的實驗結果錶明,本文提齣的人臉圖像識彆方法具有較高的識彆率和較彊的抗榦擾能力。
침대함광조、표정、자태、차당등오차혹피조성오염적인검도상적식별문제,본문제출일충기우Gabor저질회복희소표시분류적인검도상식별방법。해방법수선용저질구진회복산법구득훈련양본도상대응적오차도상;연후,대매일개훈련양본도상급기대응적오차도상진행Gabor변환,득도상응적Gabor특정향량,병장저사Gabor특정향량조성일개Gabor특정자전;진이,계산측시양본도상Gabor특정향량재해Gabor특정자전하적희소표시계수,병용해희소표시계수화Gabor특정자전,대측시양본도상적Gabor특정향량진행류관련중구,동시계산상응적류관련중구오차。최후,근거측시양본도상Gabor특정향량적류관련중구오차,실현대측시양본도상적분류식별。재CMU PIE、Extend-ed Yale B화AR수거고상적실험결과표명,본문제출적인검도상식별방법구유교고적식별솔화교강적항간우능력。
To recognize the face images containing errors of illumination,expression,pose,occlusion,or contaminated by noise,we propose a face image recognition method via Gabor low-rank recovery sparse representation-based classification .In this method,we firstly obtain the error images of the training images using the low-rank matrix recovery algorithm,and then calculate the Gabor feature vectors of the training images and the corresponding error images via the Gabor transform algorithm .With these Gabor feature vectors,we constitute a Gabor feature dictionary .Based on the Gabor feature dictionary,we calculate the sparse representa-tion coefficients of Gabor feature vector of the given test image .For each class,we use the sparse representation coefficients associ-ated with the class and the Gabor feature dictionary to reconstruct the Gabor feature vector of the given test image .And then we cal-culate the reconstruction error between the Gabor feature vector and its approximation associated with the class .Based on the recon-struction errors associated with different class,we can accurately classify the given test image .Experimental results on CMU PIE, Extend Yale B and AR databases show that the proposed face image recognition method has a higher recognition rate and greater noise immunity .