电子学报
電子學報
전자학보
ACTA ELECTRONICA SINICA
2014年
12期
2379-2385
,共7页
虹膜验证和识别%空间-相位联合分布%非局部区域关联描述子
虹膜驗證和識彆%空間-相位聯閤分佈%非跼部區域關聯描述子
홍막험증화식별%공간-상위연합분포%비국부구역관련묘술자
iris verification and identification%spatio-phase joint distribution%non-local region associating
传统的虹膜识别方法主要提取和匹配局部区域特征,忽略了距离较远区域(即非局部区域)特征之间的相关性。基于序特征的方法通过高斯低通滤波器提取区域的平均灰度值并对不同区域进行大小比较,但是这种方法并不适用于用概率密度描述区域统计特性的情况。本文提出一种新颖的虹膜识别方法解决传统方法的不足。该方法在用空间-相位联合分布表示局部区域纹理特征的基础上,通过将位于距离较远图像区域的特征进行连接得到非局部区域关联描述子表达区域之间的关联特性。论文着重研究了两区域和三区域关联对虹膜识别性能的影响。在虹膜匹配时,考虑非局部区域关联描述子的有效性以排除遮挡、高亮和噪声等干扰因素的影响,允许非局部区域关联描述子进行整体微小平移以建模虹膜纹理的非刚性形变,最后用一种鲁棒的扩散直方图距离比较关联描述子之间的差异。论文在三个公开的虹膜数据库中进行了虹膜验证和虹膜识别实验,结果表明所提出的方法在性能上优于同类方法。
傳統的虹膜識彆方法主要提取和匹配跼部區域特徵,忽略瞭距離較遠區域(即非跼部區域)特徵之間的相關性。基于序特徵的方法通過高斯低通濾波器提取區域的平均灰度值併對不同區域進行大小比較,但是這種方法併不適用于用概率密度描述區域統計特性的情況。本文提齣一種新穎的虹膜識彆方法解決傳統方法的不足。該方法在用空間-相位聯閤分佈錶示跼部區域紋理特徵的基礎上,通過將位于距離較遠圖像區域的特徵進行連接得到非跼部區域關聯描述子錶達區域之間的關聯特性。論文著重研究瞭兩區域和三區域關聯對虹膜識彆性能的影響。在虹膜匹配時,攷慮非跼部區域關聯描述子的有效性以排除遮擋、高亮和譟聲等榦擾因素的影響,允許非跼部區域關聯描述子進行整體微小平移以建模虹膜紋理的非剛性形變,最後用一種魯棒的擴散直方圖距離比較關聯描述子之間的差異。論文在三箇公開的虹膜數據庫中進行瞭虹膜驗證和虹膜識彆實驗,結果錶明所提齣的方法在性能上優于同類方法。
전통적홍막식별방법주요제취화필배국부구역특정,홀략료거리교원구역(즉비국부구역)특정지간적상관성。기우서특정적방법통과고사저통려파기제취구역적평균회도치병대불동구역진행대소비교,단시저충방법병불괄용우용개솔밀도묘술구역통계특성적정황。본문제출일충신영적홍막식별방법해결전통방법적불족。해방법재용공간-상위연합분포표시국부구역문리특정적기출상,통과장위우거리교원도상구역적특정진행련접득도비국부구역관련묘술자표체구역지간적관련특성。논문착중연구료량구역화삼구역관련대홍막식별성능적영향。재홍막필배시,고필비국부구역관련묘술자적유효성이배제차당、고량화조성등간우인소적영향,윤허비국부구역관련묘술자진행정체미소평이이건모홍막문리적비강성형변,최후용일충로봉적확산직방도거리비교관련묘술자지간적차이。논문재삼개공개적홍막수거고중진행료홍막험증화홍막식별실험,결과표명소제출적방법재성능상우우동류방법。
The traditional iris recognition methods focused on extracting and matching local region characteristics,yet failing to consider the correlation of long-distance regions(non-local regions).The ordinal measures-based methods extracted the average gray-level values of non-local regions by Gaussan filtering and then ranked them,which unfortunately were not applicable to situa-tions where regions are described by probability distributions .This paper presents a novel recognition method for tackling these shortcomings .The proposed method represents the texture characteristics of local regions using spatio-phase joint probability distribu-tions,and further explores the associating relations between them .We concatenate the features of regions at varying positions to ob-tain the non-local associating descriptors for modeling their relations,among which we primarily study the recognition performance by associating two or three regions .During iris matching process,we consider the effectiveness of non-local region associating de-scriptors to exclude the effects of occlusion,highlights,noise and etc,and allow small translation of the associating descriptors to model local deformation of iris texture;finally we adopt a robust diffusion distance between histograms for descriptors comparison . We conduct experiments for iris verification and iris identification on three public databases,and experiments demonstrate that the proposed method is superior to the state-of-the-arts .