技术经济与管理研究
技術經濟與管理研究
기술경제여관리연구
TECHNOECONOMICS & MANAGEMENT RESEARCH
2015年
1期
8-12
,共5页
信息增益%决策支持%企业管理%事务数据
信息增益%決策支持%企業管理%事務數據
신식증익%결책지지%기업관리%사무수거
Information gain%Decision support%Enterprise management%Transaction data
基于数据分析的决策支持是企业管理的重要手段。然而,在事务数据及所蕴含的信息日益多元与复杂的环境下,属性间的多重共线问题使基于属性信息熵的信息增益计算结果不够客观、准确,导致建立在属性信息增益基础上的决策树不能客观体现属性的分类作用。为此,针对可量化的属性状态及分类问题,文章针对单目标多属性决策问题,提出了一种基于主分量变换的方法。首先,对训练集的数据按照时间序列计算差分并进行标准化处理,实现无量纲化,使各属性变量的相对变化大小能够进行比较;其次,建立各属性(影响变量)与类别标志(响应变量)的相关矩阵,对所获得的矩阵进行主分量变换,得到与响应变量具有最大相关性的主分量矩阵;最后,通过主分量矩阵与各相关矩阵的相关程度来评价属性的分类效用并依此来构建决策树模型。
基于數據分析的決策支持是企業管理的重要手段。然而,在事務數據及所蘊含的信息日益多元與複雜的環境下,屬性間的多重共線問題使基于屬性信息熵的信息增益計算結果不夠客觀、準確,導緻建立在屬性信息增益基礎上的決策樹不能客觀體現屬性的分類作用。為此,針對可量化的屬性狀態及分類問題,文章針對單目標多屬性決策問題,提齣瞭一種基于主分量變換的方法。首先,對訓練集的數據按照時間序列計算差分併進行標準化處理,實現無量綱化,使各屬性變量的相對變化大小能夠進行比較;其次,建立各屬性(影響變量)與類彆標誌(響應變量)的相關矩陣,對所穫得的矩陣進行主分量變換,得到與響應變量具有最大相關性的主分量矩陣;最後,通過主分量矩陣與各相關矩陣的相關程度來評價屬性的分類效用併依此來構建決策樹模型。
기우수거분석적결책지지시기업관리적중요수단。연이,재사무수거급소온함적신식일익다원여복잡적배경하,속성간적다중공선문제사기우속성신식적적신식증익계산결과불구객관、준학,도치건립재속성신식증익기출상적결책수불능객관체현속성적분류작용。위차,침대가양화적속성상태급분류문제,문장침대단목표다속성결책문제,제출료일충기우주분량변환적방법。수선,대훈련집적수거안조시간서렬계산차분병진행표준화처리,실현무량강화,사각속성변량적상대변화대소능구진행비교;기차,건립각속성(영향변량)여유별표지(향응변량)적상관구진,대소획득적구진진행주분량변환,득도여향응변량구유최대상관성적주분량구진;최후,통과주분량구진여각상관구진적상관정도래평개속성적분류효용병의차래구건결책수모형。
Decision support based on data analysis is an important way of enterprise management. However, the transaction data and the information it contained is becoming diverse and complex, the multicollinearity of attributes causes nonobjective and inaccurate information gain of the calculation based on information entropy. Thus, the decision tree based on information gain can not objectively reflects the classification function of attributes .Therefore, focusing on the classification problems and their relevant properties which can be quantified, the paper presents a method based on principal component transformation. The method includes several steps. First, calculating the difference of training set according to the time-varying sequence and normalizing the differences to make the difference dimensionless. Then constructing the correlation matrix between response variables and factors variables and obtaining the principal component matrix by principal component transformation. At last, constructing decision tree model by means of comparing the degree of correlation between the principal component matrix and each correlation matrix .