计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
1期
62-68
,共7页
多目标进化算法%收敛性%多样性%干扰集%Pareto等级
多目標進化算法%收斂性%多樣性%榦擾集%Pareto等級
다목표진화산법%수렴성%다양성%간우집%Pareto등급
multi-objective evolutionary%convergence%diversity%interference sets%Pareto sort
为了改进多目标进化算法的收敛性和解集的多样性,提出一种基于Pareto排序的混合多目标进化算法PHMOEA。在PHMOEA中使用干扰集刺激优化非支配集的构成,改善算法的收敛性和解集的分布性,并根据Pareto等级和精英保留策略改进了交叉算子和变异算子。该算法与著名的NSGA-II和SPEA2多目标进化算法在13个基准测试函数上的对比结果表明,PHMOEA算法不仅多样性较好,而且提高了算法的收敛性,并使获得的最优解集的分布性更均匀,覆盖范围更广。
為瞭改進多目標進化算法的收斂性和解集的多樣性,提齣一種基于Pareto排序的混閤多目標進化算法PHMOEA。在PHMOEA中使用榦擾集刺激優化非支配集的構成,改善算法的收斂性和解集的分佈性,併根據Pareto等級和精英保留策略改進瞭交扠算子和變異算子。該算法與著名的NSGA-II和SPEA2多目標進化算法在13箇基準測試函數上的對比結果錶明,PHMOEA算法不僅多樣性較好,而且提高瞭算法的收斂性,併使穫得的最優解集的分佈性更均勻,覆蓋範圍更廣。
위료개진다목표진화산법적수렴성화해집적다양성,제출일충기우Pareto배서적혼합다목표진화산법PHMOEA。재PHMOEA중사용간우집자격우화비지배집적구성,개선산법적수렴성화해집적분포성,병근거Pareto등급화정영보류책략개진료교차산자화변이산자。해산법여저명적NSGA-II화SPEA2다목표진화산법재13개기준측시함수상적대비결과표명,PHMOEA산법불부다양성교호,이차제고료산법적수렴성,병사획득적최우해집적분포성경균균,복개범위경엄。
A hybrid multi-objective evolutionary algorithm based on Pareto ranking called PHMOEA is proposed to improve the convergence and diversity of the solution sets in the multi-objective evolutionary algorithm. The algorithm defines interference sets in order to stimulate the composition of the non-dominating sets, meanwhile, improves the crossover operator and mutation operator based on the Pareto sort and the strategy of elite retention. It evaluates PHMOEA with thir-teen standard benchmark problems, and is compared with two state-of-the-art multi-objective optimizers, NSGA-II and SPEA2. The results obtained indicate that PHMOEA has good diversity and convergence, what’s more, remains a better uniformity distribution and broader coverage.