中国有色金属学报(英文版)
中國有色金屬學報(英文版)
중국유색금속학보(영문판)
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
2014年
12期
3858-3865
,共8页
刘满平%蒋婷慧%王俊%刘强%吴振杰%Ying-da YU%P?l C. SKARET%Hans J. ROVEN
劉滿平%蔣婷慧%王俊%劉彊%吳振傑%Ying-da YU%P?l C. SKARET%Hans J. ROVEN
류만평%장정혜%왕준%류강%오진걸%Ying-da YU%P?l C. SKARET%Hans J. ROVEN
Al-Mg-Si铝合金%大塑性变形%等通道转角挤压%时效特性%析出动力学%力学性能%强化机制
Al-Mg-Si鋁閤金%大塑性變形%等通道轉角擠壓%時效特性%析齣動力學%力學性能%彊化機製
Al-Mg-Si려합금%대소성변형%등통도전각제압%시효특성%석출동역학%역학성능%강화궤제
Al-Mg-Si aluminum alloy%severe plastic deformation%equal-channel angular pressing%aging behavior%precipitation kinetics%mechanical properties%strengthening mechanisms
利用X射线衍射分析(XRD)、差示扫描量热法(DSC)和拉伸试验,研究不同温度等通道转角挤压(ECAP)和常规静态时效处理后6013 Al?Mg?Si 铝合金的微观结构、时效行为、析出动力学以及力学性能。XRD测得的ECAP变形后合金的平均晶粒尺寸在66~112 nm范围内,平均位错密度在1.20×1014~1.70×1014 m?2范围内。DSC分析表明,由于ECAP后试样比常规时效处理试样拥有更细小的晶粒和更高的位错密度,因此,ECAP变形后合金的析出动力学更快。与未变形合金相比,ECAP 后试样的屈服强度和抗拉强度都得到了显著提高。室温 ECAP后试样的强度达到最大,其屈服强度是静态峰时效屈服强度的1.6倍。细晶强化、位错强化以及由于ECAP过程中的动态析出而产生的析出相强化,是ECAP合金获得高强度的几种主要强化机制。
利用X射線衍射分析(XRD)、差示掃描量熱法(DSC)和拉伸試驗,研究不同溫度等通道轉角擠壓(ECAP)和常規靜態時效處理後6013 Al?Mg?Si 鋁閤金的微觀結構、時效行為、析齣動力學以及力學性能。XRD測得的ECAP變形後閤金的平均晶粒呎吋在66~112 nm範圍內,平均位錯密度在1.20×1014~1.70×1014 m?2範圍內。DSC分析錶明,由于ECAP後試樣比常規時效處理試樣擁有更細小的晶粒和更高的位錯密度,因此,ECAP變形後閤金的析齣動力學更快。與未變形閤金相比,ECAP 後試樣的屈服彊度和抗拉彊度都得到瞭顯著提高。室溫 ECAP後試樣的彊度達到最大,其屈服彊度是靜態峰時效屈服彊度的1.6倍。細晶彊化、位錯彊化以及由于ECAP過程中的動態析齣而產生的析齣相彊化,是ECAP閤金穫得高彊度的幾種主要彊化機製。
이용X사선연사분석(XRD)、차시소묘량열법(DSC)화랍신시험,연구불동온도등통도전각제압(ECAP)화상규정태시효처리후6013 Al?Mg?Si 려합금적미관결구、시효행위、석출동역학이급역학성능。XRD측득적ECAP변형후합금적평균정립척촌재66~112 nm범위내,평균위착밀도재1.20×1014~1.70×1014 m?2범위내。DSC분석표명,유우ECAP후시양비상규시효처리시양옹유경세소적정립화경고적위착밀도,인차,ECAP변형후합금적석출동역학경쾌。여미변형합금상비,ECAP 후시양적굴복강도화항랍강도도득도료현저제고。실온 ECAP후시양적강도체도최대,기굴복강도시정태봉시효굴복강도적1.6배。세정강화、위착강화이급유우ECAP과정중적동태석출이산생적석출상강화,시ECAP합금획득고강도적궤충주요강화궤제。
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66?112 nm while the average dislocation density is in the range of 1.20×1014?1.70×1014 m?2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.