微型电脑应用
微型電腦應用
미형전뇌응용
MICROCOMPUTER APPLICATIONS
2014年
12期
45-47
,共3页
数据挖掘%关联规则算法%FP-growth算法%频繁项集%高校图书推荐系统
數據挖掘%關聯規則算法%FP-growth算法%頻繁項集%高校圖書推薦繫統
수거알굴%관련규칙산법%FP-growth산법%빈번항집%고교도서추천계통
Data Mining%Association Rules Algorithm%FP-Growth Algorithm%Frequent Item Sets%Book Recommendation Sys-tem
在FP-growth关联规则算法的基础上提出了基于动态二维数组的算法,引入可变二维数组结构,动态的将事务数据库存入该数组中,可以大大提高数据挖掘的效率。并以图书馆管理系统中的图书借阅数据作为训练数据,使用改进的FP-growth算法实现了高校图书推荐系统,本系统能够从图书馆图书借阅记录中挖掘和发现读者借阅行为中隐含的规律,得到读者与图书的频繁项集,从而可以实现对不同身份的读者推荐不同类型的图书功能。
在FP-growth關聯規則算法的基礎上提齣瞭基于動態二維數組的算法,引入可變二維數組結構,動態的將事務數據庫存入該數組中,可以大大提高數據挖掘的效率。併以圖書館管理繫統中的圖書藉閱數據作為訓練數據,使用改進的FP-growth算法實現瞭高校圖書推薦繫統,本繫統能夠從圖書館圖書藉閱記錄中挖掘和髮現讀者藉閱行為中隱含的規律,得到讀者與圖書的頻繁項集,從而可以實現對不同身份的讀者推薦不同類型的圖書功能。
재FP-growth관련규칙산법적기출상제출료기우동태이유수조적산법,인입가변이유수조결구,동태적장사무수거고존입해수조중,가이대대제고수거알굴적효솔。병이도서관관리계통중적도서차열수거작위훈련수거,사용개진적FP-growth산법실현료고교도서추천계통,본계통능구종도서관도서차열기록중알굴화발현독자차열행위중은함적규률,득도독자여도서적빈번항집,종이가이실현대불동신빈적독자추천불동류형적도서공능。
Based on the algorithm of FP-growth, the paper proposed a dynamic two-dimensional array. The algorithm leads in the variable two-dimensional array structure and stores the dramatic transaction database into the array. It significantly improves the efficiency of data mining, meanwhile, by using library’s managing systems’ book lending data as a training data. The paper uses the improved FP - growth algorithm and has accomplished to the book recommendation system in colleges and universities. From the lending record in the library, this system can explore and find the rules from readers’ behavior as well as frequent itemsets between readers and books, thus it manages to recommend different types of books to readers of different identity.