传感技术学报
傳感技術學報
전감기술학보
Journal of Transduction Technology
2014年
12期
1627-1631
,共5页
王晓娜%于方舟%杨遂军%祁漫宇%叶树亮
王曉娜%于方舟%楊遂軍%祁漫宇%葉樹亮
왕효나%우방주%양수군%기만우%협수량
薄膜热电偶%动态特性%零维非稳态传热模型%集总热容法%动态标定
薄膜熱電偶%動態特性%零維非穩態傳熱模型%集總熱容法%動態標定
박막열전우%동태특성%령유비은태전열모형%집총열용법%동태표정
thin-film thermocouple%dynamic character%zero dimensional heat transfer model%the lumped capacitance method%dynamic character calibration
为了分析不同边界传热条件下薄膜热电偶的动态特性,对薄膜热电偶瞬态测温过程建立零维传热模型。运用集总热容法分析对流换热、辐射换热两种边界条件下薄膜热电偶传热过程,通过建立热结点表面能量平衡关系得到传感器动态特性理论参数。采用水浴阶跃法、激光脉冲法对CO1-K型薄膜热电偶进行动态标定实验,通过对动态响应曲线进行Z-t变换得到薄膜热电偶动态特性实验参数。实验结果表明,集总热容法能够正确分析薄膜热电偶的动态特性,且计算不同边界条件下薄膜热电偶时间常数过程简单,时间常数理论值接近实验值。
為瞭分析不同邊界傳熱條件下薄膜熱電偶的動態特性,對薄膜熱電偶瞬態測溫過程建立零維傳熱模型。運用集總熱容法分析對流換熱、輻射換熱兩種邊界條件下薄膜熱電偶傳熱過程,通過建立熱結點錶麵能量平衡關繫得到傳感器動態特性理論參數。採用水浴階躍法、激光脈遲法對CO1-K型薄膜熱電偶進行動態標定實驗,通過對動態響應麯線進行Z-t變換得到薄膜熱電偶動態特性實驗參數。實驗結果錶明,集總熱容法能夠正確分析薄膜熱電偶的動態特性,且計算不同邊界條件下薄膜熱電偶時間常數過程簡單,時間常數理論值接近實驗值。
위료분석불동변계전열조건하박막열전우적동태특성,대박막열전우순태측온과정건립령유전열모형。운용집총열용법분석대류환열、복사환열량충변계조건하박막열전우전열과정,통과건립열결점표면능량평형관계득도전감기동태특성이론삼수。채용수욕계약법、격광맥충법대CO1-K형박막열전우진행동태표정실험,통과대동태향응곡선진행Z-t변환득도박막열전우동태특성실험삼수。실험결과표명,집총열용법능구정학분석박막열전우적동태특성,차계산불동변계조건하박막열전우시간상수과정간단,시간상수이론치접근실험치。
In order to analyze dynamic character of thin-film thermocouple ( TFTC ) under different heat transfer boundary conditions,a zero dimensional heat transfer model is established on TFTC transient temperature measure-ment process. The lumped capacitance method is used to analyze thin-film thermocouple’s heat transfer process un-der convective heat transfer and radiative heat transfer boundary conditions. TFTC dynamic character theoretical pa-rameter is calculated by the establishment of the energy balance on the surface of hot junction. Water bath step method and laser pulse method are used for dynamic calibration on CO1-K thermocouple,the experimental dynamic character parameter of the sensor is obtained by Z-t transform on the dynamic response curve. The experiment re-sults show that the lumped heat capacity method can be used correctly to analyze the dynamic character of thin-film thermocouple. The thin-film thermocouple time constant under different boundary conditions is simple to calculate. The theoretical time constant is close to the experimental.