传感技术学报
傳感技術學報
전감기술학보
Journal of Transduction Technology
2014年
12期
1622-1626
,共5页
张明%曾庆军%眭翔%鲁迎迎%刘慧婷
張明%曾慶軍%眭翔%魯迎迎%劉慧婷
장명%증경군%휴상%로영영%류혜정
MEMS%降噪%CEEMD%Allan方差
MEMS%降譟%CEEMD%Allan方差
MEMS%강조%CEEMD%Allan방차
MEMS%denoising%CEEMD%Allan variance
MEMS陀螺仪工作时,容易受到各种噪声,尤其是高频噪声影响,不利于导航系统长时间工作,因此需要对数据实时去噪。互补集合经验模态分解( CEEMD)是一种按照自身尺度进行信号分解的算法,信号震荡随着分解级数逐渐减小,能够较好地分离高频和低频信号。以水下机器人MEMS陀螺仪为研究对象,根据水下实测数据,采用CEEMD分解陀螺信号,提取有效信息,并利用Allan方差验证CEEMD的有效性。仿真结果表明CEEMD对随机噪声、高频信号具有良好的降噪效果。
MEMS陀螺儀工作時,容易受到各種譟聲,尤其是高頻譟聲影響,不利于導航繫統長時間工作,因此需要對數據實時去譟。互補集閤經驗模態分解( CEEMD)是一種按照自身呎度進行信號分解的算法,信號震盪隨著分解級數逐漸減小,能夠較好地分離高頻和低頻信號。以水下機器人MEMS陀螺儀為研究對象,根據水下實測數據,採用CEEMD分解陀螺信號,提取有效信息,併利用Allan方差驗證CEEMD的有效性。倣真結果錶明CEEMD對隨機譟聲、高頻信號具有良好的降譟效果。
MEMS타라의공작시,용역수도각충조성,우기시고빈조성영향,불리우도항계통장시간공작,인차수요대수거실시거조。호보집합경험모태분해( CEEMD)시일충안조자신척도진행신호분해적산법,신호진탕수착분해급수축점감소,능구교호지분리고빈화저빈신호。이수하궤기인MEMS타라의위연구대상,근거수하실측수거,채용CEEMD분해타라신호,제취유효신식,병이용Allan방차험증CEEMD적유효성。방진결과표명CEEMD대수궤조성、고빈신호구유량호적강조효과。
MEMS-based gyroscope is vulnerable to many noises, especially high-frequency noises when executing underwater tasks,which is detrimental to a long-run system,requiring denoising data in real-time. Complementary Ensemble Empirical Mode Decomposition( CEEMD) is a novelty signal decomposition algorithm according to scales and sizes,and signal’s vibration gradually reduces with decomposition levels. And it can separate signals among dif-ferent frequencies. Taking MEMS gyroscope of underwater vehicle as a research object,this paper applies CEEMD to decompose gyroscope signals acquired during experiments in order to extract effective information. Meanwhile,Al-lan Variance is utilized to verify the effectiveness of CEEMD. Simulation results demonstrate that CEEMD has a good filtering effect on random noise and high-frequency signals.