传感技术学报
傳感技術學報
전감기술학보
Journal of Transduction Technology
2014年
12期
1643-1648
,共6页
尤丽华%吴静静%王瑶%宋淑娟
尤麗華%吳靜靜%王瑤%宋淑娟
우려화%오정정%왕요%송숙연
BP神经网络%模拟退火%pH值%非线性回归
BP神經網絡%模擬退火%pH值%非線性迴歸
BP신경망락%모의퇴화%pH치%비선성회귀
BP neural network%simulated annealing%pH value%nonlinear regression
为自动准确测定水质pH值,采用大量的具有代表性的pH值检测数据为样本,提出了一种基于模拟退火优化BP神经网络的pH值预测方法。利用模拟退火算法优化BP网络的权值,调整优化样本的选取和隐层神经元数,训练BP神经网络预测模型得到最优解。由测试样本对网络进行了预测试验,并与非线性回归的预测结果进行了对比。结果表明,该方法对水质pH值预测具有较好的非线性拟合能力和更高的预测准确性。
為自動準確測定水質pH值,採用大量的具有代錶性的pH值檢測數據為樣本,提齣瞭一種基于模擬退火優化BP神經網絡的pH值預測方法。利用模擬退火算法優化BP網絡的權值,調整優化樣本的選取和隱層神經元數,訓練BP神經網絡預測模型得到最優解。由測試樣本對網絡進行瞭預測試驗,併與非線性迴歸的預測結果進行瞭對比。結果錶明,該方法對水質pH值預測具有較好的非線性擬閤能力和更高的預測準確性。
위자동준학측정수질pH치,채용대량적구유대표성적pH치검측수거위양본,제출료일충기우모의퇴화우화BP신경망락적pH치예측방법。이용모의퇴화산법우화BP망락적권치,조정우화양본적선취화은층신경원수,훈련BP신경망락예측모형득도최우해。유측시양본대망락진행료예측시험,병여비선성회귀적예측결과진행료대비。결과표명,해방법대수질pH치예측구유교호적비선성의합능력화경고적예측준학성。
In order to determine accurate pH value of water automatically,sufficient and typical data of pH value measuring tests are collected as samples,and a pH value prediction method of optimized BP neural network based on simulated annealing algorithm is presented. The simulated annealing algorithm is employed to optimize the weights and thresholds of BP neural network,and selection methods of the training samples and the number of the hidden layer nodes are improved,thus yield an optimal solution of BP neural network. The obtained BP neural net-work is tested by samples,and the prediction results are compared with ones given by a nonlinear regression method. Experimental results exhibit that the proposed method provides better fitting ability and higher accuracy for pH value prediction.