计算机科学与探索
計算機科學與探索
계산궤과학여탐색
JOURNAL OF FRONTIERS OF COMPUTER SCIENCE & TECHNOLOGY
2014年
12期
1525-1536
,共12页
阮群生%李豫颖%龚子强
阮群生%李豫穎%龔子彊
원군생%리예영%공자강
差分自回归移动平均模型(ARIMA)%马尔可夫链%K-means%定位数据预测
差分自迴歸移動平均模型(ARIMA)%馬爾可伕鏈%K-means%定位數據預測
차분자회귀이동평균모형(ARIMA)%마이가부련%K-means%정위수거예측
autoregressive integrated moving average model (ARIMA)%Markov chain%K-means%positioning data prediction
根据基于时间序列的船舶航行定位数据的特征,在差分自回归移动平均模型的基础上,运用马尔可夫链状态转移概率特性解决非平稳数据的预测问题,在建立马尔可夫链状态迁移概率矩阵过程中,使用K-means聚类算法划分预测值与真实值的差值状态区间,继而构建出优化预测算法。对算法进行了理论分析和数值实验,并与其他算法进行了比较,结果表明,该优化算法在船舶定位数据短时预测领域具有较好的预测效果,优于多个其他算法,可应用于船舶移动定位产品中。
根據基于時間序列的船舶航行定位數據的特徵,在差分自迴歸移動平均模型的基礎上,運用馬爾可伕鏈狀態轉移概率特性解決非平穩數據的預測問題,在建立馬爾可伕鏈狀態遷移概率矩陣過程中,使用K-means聚類算法劃分預測值與真實值的差值狀態區間,繼而構建齣優化預測算法。對算法進行瞭理論分析和數值實驗,併與其他算法進行瞭比較,結果錶明,該優化算法在船舶定位數據短時預測領域具有較好的預測效果,優于多箇其他算法,可應用于船舶移動定位產品中。
근거기우시간서렬적선박항행정위수거적특정,재차분자회귀이동평균모형적기출상,운용마이가부련상태전이개솔특성해결비평은수거적예측문제,재건립마이가부련상태천이개솔구진과정중,사용K-means취류산법화분예측치여진실치적차치상태구간,계이구건출우화예측산법。대산법진행료이론분석화수치실험,병여기타산법진행료비교,결과표명,해우화산법재선박정위수거단시예측영역구유교호적예측효과,우우다개기타산법,가응용우선박이동정위산품중。
In accordance with the characteristics of ship navigation positioning data based on time series, the transition probability feature of the Markov chain state is utilized to solve the predictive problem of relatively great random volatility based on autoregressive integrated moving average model. During the process of building the probability matrix of Markov chain state transition, the K-means clustering algorithm is used to divide the differential state interval between predicted value and true value, and then a set of optimized predictive algorithm model is built. The value experiment on the algorithm and its comparison with other algorithms show that this optimized algorithm has better predictive effect when it comes to short-term predication of the ship navigation positioning data. It is better than other algorithms and can be applied to mobile positioning products for ships.