电光与控制
電光與控製
전광여공제
ELECTRONICS OPTICS & CONTROL
2014年
12期
49-52,70
,共5页
目标跟踪%目标检测%结构学习%支持向量机
目標跟蹤%目標檢測%結構學習%支持嚮量機
목표근종%목표검측%결구학습%지지향량궤
target tracking%target detection%structured learning%support vector machine
目标检测跟踪同步算法通过对视频帧的目标实时检测来达到跟踪的目的,该算法主要是为了维持一个能够在线训练的分类器,把从背景采样的样本作为负样本,从目标区域采样的样本作为正样本,然后通过分类器把二者区分开,以达到跟踪效果。然而当目标产生形变以及目标区域发生遮挡的时候,如何对样本采样和精确标记成为跟踪成败的关键。在结构支持向量机的框架下,提出一种基于结构支持向量机的目标检测跟踪同步算法。由于结构支持向量机的输出可以是复杂的数据结构,因此采用结构支持向量机,把目标位置估计作为结构支持向量机的输出,避免了对样本标记精确估计的需要,克服了当目标发生遮挡和大范围变形时导致的跟踪失败。仿真实验表明,该算法有良好稳定的跟踪效果。
目標檢測跟蹤同步算法通過對視頻幀的目標實時檢測來達到跟蹤的目的,該算法主要是為瞭維持一箇能夠在線訓練的分類器,把從揹景採樣的樣本作為負樣本,從目標區域採樣的樣本作為正樣本,然後通過分類器把二者區分開,以達到跟蹤效果。然而噹目標產生形變以及目標區域髮生遮擋的時候,如何對樣本採樣和精確標記成為跟蹤成敗的關鍵。在結構支持嚮量機的框架下,提齣一種基于結構支持嚮量機的目標檢測跟蹤同步算法。由于結構支持嚮量機的輸齣可以是複雜的數據結構,因此採用結構支持嚮量機,把目標位置估計作為結構支持嚮量機的輸齣,避免瞭對樣本標記精確估計的需要,剋服瞭噹目標髮生遮擋和大範圍變形時導緻的跟蹤失敗。倣真實驗錶明,該算法有良好穩定的跟蹤效果。
목표검측근종동보산법통과대시빈정적목표실시검측래체도근종적목적,해산법주요시위료유지일개능구재선훈련적분류기,파종배경채양적양본작위부양본,종목표구역채양적양본작위정양본,연후통과분류기파이자구분개,이체도근종효과。연이당목표산생형변이급목표구역발생차당적시후,여하대양본채양화정학표기성위근종성패적관건。재결구지지향량궤적광가하,제출일충기우결구지지향량궤적목표검측근종동보산법。유우결구지지향량궤적수출가이시복잡적수거결구,인차채용결구지지향량궤,파목표위치고계작위결구지지향량궤적수출,피면료대양본표기정학고계적수요,극복료당목표발생차당화대범위변형시도치적근종실패。방진실험표명,해산법유량호은정적근종효과。
The tracking by detection algorithm implements target tracking by detecting the target in each frames in real time.This algorithm aims to maintain an online training classifier,which intends to separate the target from the background for tracking by taking the samples from the background area as negative samples and from the target area as positive samples.But when the target was sheltered,or the shape of target changed in a large scale,how to sample and mark the samples accurately was critical for success tracking.A tracking by detection algorithm was proposed based on structured Support Vector Machine (SVM).Since the output of structured SVM can be very complex data structure,the position of the target was taken as the output of the structured SVM,which can overcomes tracking drift problem when the target was sheltered or the shape of target changed greatly.Experimental results show that the proposed algorithm has a good and stable tracking performance.