中国组织工程研究
中國組織工程研究
중국조직공정연구
Journal of Clinical Rehabilitative Tissue Engineering Research
2014年
47期
7603-7607
,共5页
吴俞萱%马昊%傅重洋%蒋华军%陶弘%曲巍
吳俞萱%馬昊%傅重洋%蔣華軍%陶弘%麯巍
오유훤%마호%부중양%장화군%도홍%곡외
生物材料%材料相容性%壳聚糖%冻干法%降解率%孔隙率%拉伸力学%抗压能力%电镜%国家自然科学基金
生物材料%材料相容性%殼聚糖%凍榦法%降解率%孔隙率%拉伸力學%抗壓能力%電鏡%國傢自然科學基金
생물재료%재료상용성%각취당%동간법%강해솔%공극솔%랍신역학%항압능력%전경%국가자연과학기금
chitosan%freeze drying%biodegradation,environmental
背景:冻干法的原理是将材料溶液冷冻塑性后于真空状态下升华溶剂,保留溶质,从而制作出具有孔隙结构支架的方法。目的:利用冻干法制备壳聚糖管状支架材料,研究管状支架的理化性质。方法:采用冻干法制备壳聚糖管状材料,直接观察材料的自然形态,电镜下观察材料的微观结构。将壳聚糖聚糖管状材料分别放入PBS和纯水中各50 d,放入胰酶液体中1 d,同时将其植入SD乳鼠肌肉及背部皮下30 d,观察材料降解率,计算材料的孔隙率。利用拉伸力学仪器测定壳聚糖管状材料在干燥时和浸水后的拉伸力学,并测量干燥时的拉伸率,利用压力计测量壳聚糖管状材料在干燥和浸水后的抗压能力。结果与结论:壳聚糖管状材料外部形态呈标准管状,电镜下可见材料为大小不同的孔隙组成,孔隙较均匀分布,孔隙大小为50-200μm。壳聚糖管状材料在PBS、纯水、胰酶及小鼠体内的降解率分别为(5.33±0.12)%,(11.26±0.15)%,0.012%,(35.2±3.7)%,材料的孔隙率为(97.5±1.5)%。壳聚糖管状材料干燥状态下的断裂强度与抗压能力均高于浸水状态(P<0.05)。表明冻干法制备的壳聚糖管状材料具有良好的降解率及孔隙率,同时也具有较好的拉伸力学及抗压能力。
揹景:凍榦法的原理是將材料溶液冷凍塑性後于真空狀態下升華溶劑,保留溶質,從而製作齣具有孔隙結構支架的方法。目的:利用凍榦法製備殼聚糖管狀支架材料,研究管狀支架的理化性質。方法:採用凍榦法製備殼聚糖管狀材料,直接觀察材料的自然形態,電鏡下觀察材料的微觀結構。將殼聚糖聚糖管狀材料分彆放入PBS和純水中各50 d,放入胰酶液體中1 d,同時將其植入SD乳鼠肌肉及揹部皮下30 d,觀察材料降解率,計算材料的孔隙率。利用拉伸力學儀器測定殼聚糖管狀材料在榦燥時和浸水後的拉伸力學,併測量榦燥時的拉伸率,利用壓力計測量殼聚糖管狀材料在榦燥和浸水後的抗壓能力。結果與結論:殼聚糖管狀材料外部形態呈標準管狀,電鏡下可見材料為大小不同的孔隙組成,孔隙較均勻分佈,孔隙大小為50-200μm。殼聚糖管狀材料在PBS、純水、胰酶及小鼠體內的降解率分彆為(5.33±0.12)%,(11.26±0.15)%,0.012%,(35.2±3.7)%,材料的孔隙率為(97.5±1.5)%。殼聚糖管狀材料榦燥狀態下的斷裂彊度與抗壓能力均高于浸水狀態(P<0.05)。錶明凍榦法製備的殼聚糖管狀材料具有良好的降解率及孔隙率,同時也具有較好的拉伸力學及抗壓能力。
배경:동간법적원리시장재료용액냉동소성후우진공상태하승화용제,보류용질,종이제작출구유공극결구지가적방법。목적:이용동간법제비각취당관상지가재료,연구관상지가적이화성질。방법:채용동간법제비각취당관상재료,직접관찰재료적자연형태,전경하관찰재료적미관결구。장각취당취당관상재료분별방입PBS화순수중각50 d,방입이매액체중1 d,동시장기식입SD유서기육급배부피하30 d,관찰재료강해솔,계산재료적공극솔。이용랍신역학의기측정각취당관상재료재간조시화침수후적랍신역학,병측량간조시적랍신솔,이용압력계측량각취당관상재료재간조화침수후적항압능력。결과여결론:각취당관상재료외부형태정표준관상,전경하가견재료위대소불동적공극조성,공극교균균분포,공극대소위50-200μm。각취당관상재료재PBS、순수、이매급소서체내적강해솔분별위(5.33±0.12)%,(11.26±0.15)%,0.012%,(35.2±3.7)%,재료적공극솔위(97.5±1.5)%。각취당관상재료간조상태하적단렬강도여항압능력균고우침수상태(P<0.05)。표명동간법제비적각취당관상재료구유량호적강해솔급공극솔,동시야구유교호적랍신역학급항압능력。
BACKGROUND:The principle of lyophilization is to sublimate the solvent of frozen materials in vacuum and retain the solute, thus making a pore structure. OBJECTIVE: To produce a chitosan tubular scaffold by lyophilization, and to test its physicochemical properties. METHODS: The chitosan tubular material was prepared by lyophilization method, folowed by gross observation and electron microscopic observation. The chitosan tubular material samples were placed into PBS solution and pure water for 50 days, respectively, and then immersed in trypsin liquid for 1 day folowed by embedded into the muscle and dorsal skin of neonatal Sprague-Dawley rats for 30 days. The degradation rate and porosity of the material were observed and calculated. The breaking strength and compressive strength of the material were determined both under drying and soaking conditions using tensile instrument and pressure meter, respectively. RESULTS AND CONCLUSION:The external form of the chitosan tubular material was normaly tubular. Under the electron microscope, it was composited by different size pores, and the pore size was 50-200μm. The degradation rates of the material were (5.33±0.12)% in PBS, (11.26±0.15) in water, 0.012% in the trypsin liquid and (35.2±3.7)in vivo. The porosity rate was (97.5±1.5)%. The breaking strength and compressive strength of the material was higher under the drying state than under the soaking state (P < 0.05). These findings indicate that the lyophilization method can produce the chitosan tubular material with good porosity rate and degradation rate as wel as good tensile ability and compressive capability.