长春理工大学学报(自然科学版)
長春理工大學學報(自然科學版)
장춘리공대학학보(자연과학판)
JOURNAL OF CHANGCHUN UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2014年
6期
94-98
,共5页
沈凌云%朱明%郎百和%韩太林
瀋凌雲%硃明%郎百和%韓太林
침릉운%주명%랑백화%한태림
机器视觉%表面瑕疵%视觉注意%显著图%区域生长
機器視覺%錶麵瑕疵%視覺註意%顯著圖%區域生長
궤기시각%표면하자%시각주의%현저도%구역생장
machine vision%surface flaw%visual attention%saliency map%region growing
为了实现CTP版材表面不同类型瑕疵的自适应在线检测,引入人类视觉注意机制,融合区域生长算法对表面瑕疵图像进行分割,以面积作为特征值对瑕疵进行识别。首先根据人类视觉系统具有选择性注意机制的特性,对CTP版材表面图像的多特征图像采用图像金字塔分解得到多尺度图像,并利用基于图的算法(GBVS)将多尺度下多特征的图像融合为全局显著图。然后将显著图中最显著点即注意焦点作为区域生长的种子点,相似性作为区域生长准则,对原图像的梯度图像采用区域生长算法获得瑕疵区域二值化图像。最后利用注意抑制返回机制和邻近优先的准则,查找其他未检瑕疵,直至满足CTP版材的行业标准。实验结果表明:瑕疵检测系统分辨率0.1mm,检测平均准确率达96.3%以上,算法运行速度快,能满足CTP版材生产的在线检测实时性要求。
為瞭實現CTP版材錶麵不同類型瑕疵的自適應在線檢測,引入人類視覺註意機製,融閤區域生長算法對錶麵瑕疵圖像進行分割,以麵積作為特徵值對瑕疵進行識彆。首先根據人類視覺繫統具有選擇性註意機製的特性,對CTP版材錶麵圖像的多特徵圖像採用圖像金字塔分解得到多呎度圖像,併利用基于圖的算法(GBVS)將多呎度下多特徵的圖像融閤為全跼顯著圖。然後將顯著圖中最顯著點即註意焦點作為區域生長的種子點,相似性作為區域生長準則,對原圖像的梯度圖像採用區域生長算法穫得瑕疵區域二值化圖像。最後利用註意抑製返迴機製和鄰近優先的準則,查找其他未檢瑕疵,直至滿足CTP版材的行業標準。實驗結果錶明:瑕疵檢測繫統分辨率0.1mm,檢測平均準確率達96.3%以上,算法運行速度快,能滿足CTP版材生產的在線檢測實時性要求。
위료실현CTP판재표면불동류형하자적자괄응재선검측,인입인류시각주의궤제,융합구역생장산법대표면하자도상진행분할,이면적작위특정치대하자진행식별。수선근거인류시각계통구유선택성주의궤제적특성,대CTP판재표면도상적다특정도상채용도상금자탑분해득도다척도도상,병이용기우도적산법(GBVS)장다척도하다특정적도상융합위전국현저도。연후장현저도중최현저점즉주의초점작위구역생장적충자점,상사성작위구역생장준칙,대원도상적제도도상채용구역생장산법획득하자구역이치화도상。최후이용주의억제반회궤제화린근우선적준칙,사조기타미검하자,직지만족CTP판재적행업표준。실험결과표명:하자검측계통분변솔0.1mm,검측평균준학솔체96.3%이상,산법운행속도쾌,능만족CTP판재생산적재선검측실시성요구。
In order to realize automatic detection for flaw on CTP plate,an automatic detection system is established and its applied algorithms such as region growing and graph-based visual saliency(GBVS) is investigated. First,accord-ing to biological characteristics of the human visual attention mechanism,image elementary features were extracted by sampling the center-surround differences,which were combined into a saliency map. Then competition among salient points in this map gave rise to a single focus of attention (FOA) which was selected as the seed point of region grow-ing segmentation. Taking similarity for region growing criteria,binary image of flaw region was formed. Finally,after computing characteristic parameters according to flaw region and using area features,flaw on CTP plate surface were identified. Experimental results indicate that intelligent detection of flaw on CTP plate achieves system resolution of 0.1mm with average accuracy rate of 96.3%.It can satisfy the system requirements of non-contact,online,real time,high-er precision,rapid speed and stabilization.