解放军理工大学学报(自然科学版)
解放軍理工大學學報(自然科學版)
해방군리공대학학보(자연과학판)
JOURNAL OF PLA UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2014年
6期
527-533
,共7页
崔丽珍%李蕾%赫佳星%史明泉
崔麗珍%李蕾%赫佳星%史明泉
최려진%리뢰%혁가성%사명천
井下定位%虚拟指纹地图%马尔科夫链%接收信号强度
井下定位%虛擬指紋地圖%馬爾科伕鏈%接收信號彊度
정하정위%허의지문지도%마이과부련%접수신호강도
mine localization%virtual Radio-map%Markov chain%RSSI
为了在煤矿井下获得更高的定位精度,提出一种基于虚拟Radio-map及Markov链的定位方法。结合井下复杂环境,采用信道衰减模型及线性插值法实现了动态衰减因子,建立虚拟Radio-map的同时降低了工作量;考虑到每处采样点接收信号强度分布先验假设和统计特征,在线阶段采用基于贝叶斯准则框架的加权核函数算法,为每个样本数据赋予一个以自身为“核心”的函数,构建的概率密度分布避免了确定模型带来的误差,从而提高了定位精度;为进一步优化定位结果,考虑先验概率对贝叶斯后验概率的影响,提出了基于高斯模型的Markov链定位算法,抑制了运动目标位置的大幅度跳变,使目标定位更加精确。实验表明,所提算法可以通过较低数据采集工作量达到一定的定位精度,满足井下目标定位需求。
為瞭在煤礦井下穫得更高的定位精度,提齣一種基于虛擬Radio-map及Markov鏈的定位方法。結閤井下複雜環境,採用信道衰減模型及線性插值法實現瞭動態衰減因子,建立虛擬Radio-map的同時降低瞭工作量;攷慮到每處採樣點接收信號彊度分佈先驗假設和統計特徵,在線階段採用基于貝葉斯準則框架的加權覈函數算法,為每箇樣本數據賦予一箇以自身為“覈心”的函數,構建的概率密度分佈避免瞭確定模型帶來的誤差,從而提高瞭定位精度;為進一步優化定位結果,攷慮先驗概率對貝葉斯後驗概率的影響,提齣瞭基于高斯模型的Markov鏈定位算法,抑製瞭運動目標位置的大幅度跳變,使目標定位更加精確。實驗錶明,所提算法可以通過較低數據採集工作量達到一定的定位精度,滿足井下目標定位需求。
위료재매광정하획득경고적정위정도,제출일충기우허의Radio-map급Markov련적정위방법。결합정하복잡배경,채용신도쇠감모형급선성삽치법실현료동태쇠감인자,건립허의Radio-map적동시강저료공작량;고필도매처채양점접수신호강도분포선험가설화통계특정,재선계단채용기우패협사준칙광가적가권핵함수산법,위매개양본수거부여일개이자신위“핵심”적함수,구건적개솔밀도분포피면료학정모형대래적오차,종이제고료정위정도;위진일보우화정위결과,고필선험개솔대패협사후험개솔적영향,제출료기우고사모형적Markov련정위산법,억제료운동목표위치적대폭도도변,사목표정위경가정학。실험표명,소제산법가이통과교저수거채집공작량체도일정적정위정도,만족정하목표정위수구。
For the heavy workload of data sampling by fingerprint matching algorithm, a algorithm based on virtual Radio-map and Markov chain was presented to enhance the positioning accuracy in coal mine. Given the complex underground environment, dynamic attenuation factor was implemented by fading channel model and linear interpo-lation method,and the establishments of virtual Radio-map reduced the offline work load. Given the received signal strength indication ( RSSI ) priori distribution assumptions and statistical characteristics at each sampling point, weighted kernel function method based on Bayesian framework was utilized at online phase. To construct probability density distribution, each sample was given a "kernel" with itself by kernel function method and avoided errors caused by determining model,with the positioning precision improved. In order to optimize the positioning results, considering the influence of prior probability on posterior probability,Markov chain positioning algorithm based on Gaussian model was proposed and the positioning improved by inhibiting greatly the jump of moving target. Experi-ments show that the positioning accuracy meets the requirement of the underground localization.