含能材料
含能材料
함능재료
ENERGETIC MATERIALS
2014年
6期
774-779
,共6页
物理化学%硝仿肼(HNF)%差示扫描量热法(DSC)%热重法(TG)%热分解动力学%热安全性
物理化學%硝倣肼(HNF)%差示掃描量熱法(DSC)%熱重法(TG)%熱分解動力學%熱安全性
물이화학%초방정(HNF)%차시소묘량열법(DSC)%열중법(TG)%열분해동역학%열안전성
physical chemistry%hydrazinium nitroformate(HNF)%differential scanning calorimetry(DSC)%thermogravimetry (TG)%thermal decomposition kinetics%thermal safety
为了解硝仿肼(HNF)的热分解动力学和热安全性,用真空安定性试验(VST)、差示扫描量热法(DSC)和热重法(TG)研究了 HNF的热分解特性。根据 HNF在升温速率为5,10,15,20℃·min-1时的 DSC曲线的峰温和 TG 曲线的分解深度(α),分别用Kissinger法和 Ozawa法计算了 HNF热分解反应的表观活化能(Ek和 Ea)和指前因子(Ak)、提出了描述 HNF放热分解过程的动力学方程。计算了 HNF热分解反应的热力学参数(活化自由能ΔG≠,活化焓ΔH≠和活化熵ΔS≠)和 HNF的热安全性参数(自发火温度 Tbpo和自加速分解温度 TSADT)。结果表明,HNF的放气量为0.41 mL·g-1,不超过2 mL·g-1的标准,显示HNF有良好的热安定性。HNF吸热熔融后的放热分解反应过程可分两个阶段。Ek=257.10 kJ·mol-1,Ak=1.74×1033s-1,ΔG≠=103.37 kJ·mol-1、ΔH≠=253.82 kJ·mol-1,ΔS≠=380.78 J·K-1·mol-1,Tbpo=400.28 K 和 TSADT=395.10 K。放热分解反应的动力学方程可描述为:对α=0.20~0.65的第一阶段dα/dt=kf(α)=Ae-RETf(α)=5.14×1021×(1-α)-ln(1-α)12 exp(-1.81×104/T)对α=0.65~0.80的第二阶段 dα/dt=kf(α)=Ae-RETf(α)=3.30×1014×(1-α)-ln(1-α)-1exp(-1.33×104/T)。
為瞭解硝倣肼(HNF)的熱分解動力學和熱安全性,用真空安定性試驗(VST)、差示掃描量熱法(DSC)和熱重法(TG)研究瞭 HNF的熱分解特性。根據 HNF在升溫速率為5,10,15,20℃·min-1時的 DSC麯線的峰溫和 TG 麯線的分解深度(α),分彆用Kissinger法和 Ozawa法計算瞭 HNF熱分解反應的錶觀活化能(Ek和 Ea)和指前因子(Ak)、提齣瞭描述 HNF放熱分解過程的動力學方程。計算瞭 HNF熱分解反應的熱力學參數(活化自由能ΔG≠,活化焓ΔH≠和活化熵ΔS≠)和 HNF的熱安全性參數(自髮火溫度 Tbpo和自加速分解溫度 TSADT)。結果錶明,HNF的放氣量為0.41 mL·g-1,不超過2 mL·g-1的標準,顯示HNF有良好的熱安定性。HNF吸熱鎔融後的放熱分解反應過程可分兩箇階段。Ek=257.10 kJ·mol-1,Ak=1.74×1033s-1,ΔG≠=103.37 kJ·mol-1、ΔH≠=253.82 kJ·mol-1,ΔS≠=380.78 J·K-1·mol-1,Tbpo=400.28 K 和 TSADT=395.10 K。放熱分解反應的動力學方程可描述為:對α=0.20~0.65的第一階段dα/dt=kf(α)=Ae-RETf(α)=5.14×1021×(1-α)-ln(1-α)12 exp(-1.81×104/T)對α=0.65~0.80的第二階段 dα/dt=kf(α)=Ae-RETf(α)=3.30×1014×(1-α)-ln(1-α)-1exp(-1.33×104/T)。
위료해초방정(HNF)적열분해동역학화열안전성,용진공안정성시험(VST)、차시소묘량열법(DSC)화열중법(TG)연구료 HNF적열분해특성。근거 HNF재승온속솔위5,10,15,20℃·min-1시적 DSC곡선적봉온화 TG 곡선적분해심도(α),분별용Kissinger법화 Ozawa법계산료 HNF열분해반응적표관활화능(Ek화 Ea)화지전인자(Ak)、제출료묘술 HNF방열분해과정적동역학방정。계산료 HNF열분해반응적열역학삼수(활화자유능ΔG≠,활화함ΔH≠화활화적ΔS≠)화 HNF적열안전성삼수(자발화온도 Tbpo화자가속분해온도 TSADT)。결과표명,HNF적방기량위0.41 mL·g-1,불초과2 mL·g-1적표준,현시HNF유량호적열안정성。HNF흡열용융후적방열분해반응과정가분량개계단。Ek=257.10 kJ·mol-1,Ak=1.74×1033s-1,ΔG≠=103.37 kJ·mol-1、ΔH≠=253.82 kJ·mol-1,ΔS≠=380.78 J·K-1·mol-1,Tbpo=400.28 K 화 TSADT=395.10 K。방열분해반응적동역학방정가묘술위:대α=0.20~0.65적제일계단dα/dt=kf(α)=Ae-RETf(α)=5.14×1021×(1-α)-ln(1-α)12 exp(-1.81×104/T)대α=0.65~0.80적제이계단 dα/dt=kf(α)=Ae-RETf(α)=3.30×1014×(1-α)-ln(1-α)-1exp(-1.33×104/T)。
To understand the thermal decomposition kinetics and thermal safety of hydrazinium nitroformate( HNF),thermal decomposition characteristics of HNF were studied by vacuum stability test( VST),differential scanning calorimetry( DSC)and thermogravimetry(TG). According to peak temperatures of DSC curves and conversion degrees(α)of TG curves at 5,10, 15 ℃·min-1 and 20 ℃·min-1,the apparent activation energy(Ek and Ea)and pre-exponential factor(Ak)for thermal decompo-sition reaction of HNF were calculated by Kissinger′s method and Ozawa′s method,respectively. The kinetic equations describing the exothermic decomposition process of HNF were presented. Thermodynamic parameters( free energy of activation ΔG≠,enthal-py of activation ΔH≠ and entropy of activation ΔS≠)for thermal decomposition reaction of HNF and thermal safety parameters (critical temperature of thermal explosion Tbpo and self-accelerating decomposition temperature TSADT)for HNF were calculated. Results show that the volume of gas evolved for HNF is 0. 41 mL·g-1 ,which does not exceed the standard of 2 mL·g-1 ,revealing that HNF has good thermal stability. The exothermic decomposition process of HNF after melting can be divided into two stages. Ek=257.10 kJ·mol-1 ,Ak=1.74×1033s-1,ΔG≠=103. 37 kJ·mol-1,ΔH≠ =253. 82 kJ·mol-1,ΔS≠ =380. 78 J·K-1 ·mol-1, Tbpo=400. 28 Kand TSADT=395. 10 K. The kinetic equation of exothermic decomposition reaction may be described as:for the first stage in the α range of 0.20 ~0.65,dα/dt=kf(α)=Ae-RETf(α)=5.14×1021×(1-α)-ln(1-α ) 12 exp(- 1.81×104 ),and for the T second stage in the α range of 0.65 ~0.80,dα/dt=kf(α)=Ae-RETf(α)=3.30×1014×(1-α)-ln(1-α ) -1exp(-1.33×104 T).