机床与液压
機床與液壓
궤상여액압
MACHINE TOOL & HYDRAULICS
2014年
23期
1-4,50
,共5页
数控机床%温度布点优化%主轴热漂移%热误差建模
數控機床%溫度佈點優化%主軸熱漂移%熱誤差建模
수공궤상%온도포점우화%주축열표이%열오차건모
CNC machine tools%Temperature measuring point optimization%Thermal drift of spindle%Thermal error modeling
在热误差建模中,温度测点的优化选择至关重要。提出了运用相关性方法,分析测点温度与主轴热漂移之间的关系,找到相关性较高的测点位置,实现温度布点的优化选择。在此基础上采用模拟退火遗传算法( GSA)优化BP神经网络的方法建立热误差模型,并通过实验验证。结果表明:优化的热误差模型能够跳出局部最优而达到全局最优解,得到的误差模型拟合值更加接近实测误差值;基于GSA优化的BP网络模型较传统的神经网络模型有较高的精度及更强鲁棒性。
在熱誤差建模中,溫度測點的優化選擇至關重要。提齣瞭運用相關性方法,分析測點溫度與主軸熱漂移之間的關繫,找到相關性較高的測點位置,實現溫度佈點的優化選擇。在此基礎上採用模擬退火遺傳算法( GSA)優化BP神經網絡的方法建立熱誤差模型,併通過實驗驗證。結果錶明:優化的熱誤差模型能夠跳齣跼部最優而達到全跼最優解,得到的誤差模型擬閤值更加接近實測誤差值;基于GSA優化的BP網絡模型較傳統的神經網絡模型有較高的精度及更彊魯棒性。
재열오차건모중,온도측점적우화선택지관중요。제출료운용상관성방법,분석측점온도여주축열표이지간적관계,조도상관성교고적측점위치,실현온도포점적우화선택。재차기출상채용모의퇴화유전산법( GSA)우화BP신경망락적방법건립열오차모형,병통과실험험증。결과표명:우화적열오차모형능구도출국부최우이체도전국최우해,득도적오차모형의합치경가접근실측오차치;기우GSA우화적BP망락모형교전통적신경망락모형유교고적정도급경강로봉성。
Optimization selection of the temperature measuring point is crucial during thermal error modeling. A method using correlation analysis was present to analyze the relationship between the spindle thermal drift and point temperature of measurement. The temperature distribution points of the optimal choice were achieved by finding a higher correlation measuring point of location. On basis of this, by using simulated annealing and genetic algorithm ( GSA) optimized BP neural network method, the thermal error model was established, and was verified by experiments. The results show optimized thermal error model can escape from local optimal and achieve global optimal solution. The resulting error model can fit values more closer to the actual measured error values. Based on simulated an?nealing genetic algorithm ( GSA) optimization, BP neural network model has higher accuracy and greater robustness than that of the traditional neural network model.