模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2014年
12期
1078-1088
,共11页
多目标优化%协同进化%多形态种群%向量夹角%排序链表
多目標優化%協同進化%多形態種群%嚮量夾角%排序鏈錶
다목표우화%협동진화%다형태충군%향량협각%배서련표
Multi_objective Optimization%Co_evolution%Polymorphous Population%Vectorial Angle%Ordered Link_List
为提高进化多目标优化算法在维持最优解多样性方面的性能,获得分布更均匀的Pareto非支配解集,文中提出一种具有多形态种群协同进化的多目标优化算法。该算法构建一种多形态种群协同进化架构,通过引入最小向量夹角的相似性度量方法,给出次优非支配个体选择策略,从而提高种群的多样性。算法还提出一种基于排序链表的拥挤个体删除策略,进一步提高解集分布的均匀性和宽广性。与经典算法对比结果表明,文中算法在解的分布性和多样性方面均有较好表现,尤其在解集分布均匀性方面优势较明显。
為提高進化多目標優化算法在維持最優解多樣性方麵的性能,穫得分佈更均勻的Pareto非支配解集,文中提齣一種具有多形態種群協同進化的多目標優化算法。該算法構建一種多形態種群協同進化架構,通過引入最小嚮量夾角的相似性度量方法,給齣次優非支配箇體選擇策略,從而提高種群的多樣性。算法還提齣一種基于排序鏈錶的擁擠箇體刪除策略,進一步提高解集分佈的均勻性和寬廣性。與經典算法對比結果錶明,文中算法在解的分佈性和多樣性方麵均有較好錶現,尤其在解集分佈均勻性方麵優勢較明顯。
위제고진화다목표우화산법재유지최우해다양성방면적성능,획득분포경균균적Pareto비지배해집,문중제출일충구유다형태충군협동진화적다목표우화산법。해산법구건일충다형태충군협동진화가구,통과인입최소향량협각적상사성도량방법,급출차우비지배개체선택책략,종이제고충군적다양성。산법환제출일충기우배서련표적옹제개체산제책략,진일보제고해집분포적균균성화관엄성。여경전산법대비결과표명,문중산법재해적분포성화다양성방면균유교호표현,우기재해집분포균균성방면우세교명현。
To improve the diversity maintenance ability of evolutionary multi_objective optimization algorithms and obtain a set of better distributed non_dominated solutions, a co_evolutionary multi_objective optimization algorithm with polymorphous populations is proposed. Firstly, a co_evolutionary frame of polymorphous populations is designed. Next, by introducing the minimum vectorial angle which is capable of measuring the similarity between different Pareto_ranked solutions, a selection strategy for suboptimum non_dominated solutions is proposed to enhance the diversity of populations. Finally, a population removal strategy based on an ordered link_list is put forward. Thus, the uniformity and the spread of the solutions are improved. Compared with some typical algorithms, the proposed algorithm has good convergence and remains a better diversity and uniformity.