植物营养与肥料学报
植物營養與肥料學報
식물영양여비료학보
PLANT NUTRITION AND FERTILIZER SCIENCE
2014年
5期
1294-1302
,共9页
杨俊刚%倪小会%曹兵%肖强%邹国元%刘宝存
楊俊剛%倪小會%曹兵%肖彊%鄒國元%劉寶存
양준강%예소회%조병%초강%추국원%류보존
控释肥料%氮钾吸收%土壤硝态氮
控釋肥料%氮鉀吸收%土壤硝態氮
공석비료%담갑흡수%토양초태담
controlled-release fertilizer%nitrogen and potassium uptakes%soil nitrate nitrogen
目的设施蔬菜生产中水肥的过量投入不仅引发环境污染问题,而且增加生产成本。因此迫切需要通过调整肥料养分释放速率,在满足作物营养充分供应的同时,降低肥料和劳动投入,提高产出。为此,本文研究了习惯施肥与3种番茄控释专用配方肥对京郊番茄产量、品质、氮钾吸收以及土壤中硝态氮和钾残留的影响,以期为番茄的合理施肥提供依据。方法采用蔬菜大棚内小区试验的方法,试验设对照(不施氮肥,CK)、有机肥(只施有机肥,MN)、习惯施肥(施N 300 kg/hm2,TN)、控释专用肥Ⅰ(CN1)、控释肥专用肥Ⅱ(CN2)和控释肥专用肥Ⅲ( CN3)共6个处理。3个专用肥的氮由80%的控释氮与20%速效氮构成,作为基肥一次性施入,用量与习惯施肥相同,除CK外其他处理的有机肥用量均为8 t/hm2。控释肥为自制的聚合物包膜尿素(含N 42%)和包膜硫酸钾(含K2 O 47%)。包膜尿素3种,2个为延迟释放型,1个为直线释放型;2种包膜钾肥均为直线释放型。按不同比例组成3种专用肥。试验采用自压式滴灌系统,每畦安装一条滴灌管,共灌水6次,各小区等量灌溉,分别在移栽及移栽后第44、65、73、79和89 d灌水,每次分别为45、37、35、28、30和27 mm,每小区总量均为202 mm。小区面积为24 m2,每个处理3次重复,随机排列。高畦栽培,畦宽1.4 m,双行定植,行距40 cm,株距40 cm。结果各处理番茄鲜果产量为79.287.1 t/hm2,其间无显著差异。 CN3处理果实的硝酸盐含量增加,但Vc含量却下降,果实品质有所降低。3个控释肥处理的S型控释肥表现为前控后促的供氮趋势,在果实膨大期无机氮供应达到N102247 kg/hm2,与习惯施肥处理多次追肥形成的供氮规律相似。控释钾肥仅释放23.2%36.0%,环境温度对于控释钾肥的释放促进作用很小。收获后土壤硝态氮的残留主要集中在表层(0—20 cm)和次表层(20—40 cm),占0—100 cm土层的87.1%;0—60 cm土层内,CN3处理的NO3--N残留量与习惯施肥相当,而CN1和CN2处理的NO3--N残留比习惯施肥减少37.3%55.0%,有效降低了硝态氮向下淋洗。施肥增加了各处理表层土壤中的钾含量,表层以下各处理的钾含量差别不大。结论3个专用肥处理中控释肥一次性施用不仅节约了施肥时间和劳动成本,而且在果实膨大期提供了充足的氮素供应,实现了与作物氮素吸收的同步。控释专用肥配方1和配方2可以提供合理的氮素供应,在降低劳动投入和节水的情况下,番茄产量和果实品质不降低,并减少了硝态氮的淋洗损失。
目的設施蔬菜生產中水肥的過量投入不僅引髮環境汙染問題,而且增加生產成本。因此迫切需要通過調整肥料養分釋放速率,在滿足作物營養充分供應的同時,降低肥料和勞動投入,提高產齣。為此,本文研究瞭習慣施肥與3種番茄控釋專用配方肥對京郊番茄產量、品質、氮鉀吸收以及土壤中硝態氮和鉀殘留的影響,以期為番茄的閤理施肥提供依據。方法採用蔬菜大棚內小區試驗的方法,試驗設對照(不施氮肥,CK)、有機肥(隻施有機肥,MN)、習慣施肥(施N 300 kg/hm2,TN)、控釋專用肥Ⅰ(CN1)、控釋肥專用肥Ⅱ(CN2)和控釋肥專用肥Ⅲ( CN3)共6箇處理。3箇專用肥的氮由80%的控釋氮與20%速效氮構成,作為基肥一次性施入,用量與習慣施肥相同,除CK外其他處理的有機肥用量均為8 t/hm2。控釋肥為自製的聚閤物包膜尿素(含N 42%)和包膜硫痠鉀(含K2 O 47%)。包膜尿素3種,2箇為延遲釋放型,1箇為直線釋放型;2種包膜鉀肥均為直線釋放型。按不同比例組成3種專用肥。試驗採用自壓式滴灌繫統,每畦安裝一條滴灌管,共灌水6次,各小區等量灌溉,分彆在移栽及移栽後第44、65、73、79和89 d灌水,每次分彆為45、37、35、28、30和27 mm,每小區總量均為202 mm。小區麵積為24 m2,每箇處理3次重複,隨機排列。高畦栽培,畦寬1.4 m,雙行定植,行距40 cm,株距40 cm。結果各處理番茄鮮果產量為79.287.1 t/hm2,其間無顯著差異。 CN3處理果實的硝痠鹽含量增加,但Vc含量卻下降,果實品質有所降低。3箇控釋肥處理的S型控釋肥錶現為前控後促的供氮趨勢,在果實膨大期無機氮供應達到N102247 kg/hm2,與習慣施肥處理多次追肥形成的供氮規律相似。控釋鉀肥僅釋放23.2%36.0%,環境溫度對于控釋鉀肥的釋放促進作用很小。收穫後土壤硝態氮的殘留主要集中在錶層(0—20 cm)和次錶層(20—40 cm),佔0—100 cm土層的87.1%;0—60 cm土層內,CN3處理的NO3--N殘留量與習慣施肥相噹,而CN1和CN2處理的NO3--N殘留比習慣施肥減少37.3%55.0%,有效降低瞭硝態氮嚮下淋洗。施肥增加瞭各處理錶層土壤中的鉀含量,錶層以下各處理的鉀含量差彆不大。結論3箇專用肥處理中控釋肥一次性施用不僅節約瞭施肥時間和勞動成本,而且在果實膨大期提供瞭充足的氮素供應,實現瞭與作物氮素吸收的同步。控釋專用肥配方1和配方2可以提供閤理的氮素供應,在降低勞動投入和節水的情況下,番茄產量和果實品質不降低,併減少瞭硝態氮的淋洗損失。
목적설시소채생산중수비적과량투입불부인발배경오염문제,이차증가생산성본。인차박절수요통과조정비료양분석방속솔,재만족작물영양충분공응적동시,강저비료화노동투입,제고산출。위차,본문연구료습관시비여3충번가공석전용배방비대경교번가산량、품질、담갑흡수이급토양중초태담화갑잔류적영향,이기위번가적합리시비제공의거。방법채용소채대붕내소구시험적방법,시험설대조(불시담비,CK)、유궤비(지시유궤비,MN)、습관시비(시N 300 kg/hm2,TN)、공석전용비Ⅰ(CN1)、공석비전용비Ⅱ(CN2)화공석비전용비Ⅲ( CN3)공6개처리。3개전용비적담유80%적공석담여20%속효담구성,작위기비일차성시입,용량여습관시비상동,제CK외기타처리적유궤비용량균위8 t/hm2。공석비위자제적취합물포막뇨소(함N 42%)화포막류산갑(함K2 O 47%)。포막뇨소3충,2개위연지석방형,1개위직선석방형;2충포막갑비균위직선석방형。안불동비례조성3충전용비。시험채용자압식적관계통,매휴안장일조적관관,공관수6차,각소구등량관개,분별재이재급이재후제44、65、73、79화89 d관수,매차분별위45、37、35、28、30화27 mm,매소구총량균위202 mm。소구면적위24 m2,매개처리3차중복,수궤배렬。고휴재배,휴관1.4 m,쌍행정식,행거40 cm,주거40 cm。결과각처리번가선과산량위79.287.1 t/hm2,기간무현저차이。 CN3처리과실적초산염함량증가,단Vc함량각하강,과실품질유소강저。3개공석비처리적S형공석비표현위전공후촉적공담추세,재과실팽대기무궤담공응체도N102247 kg/hm2,여습관시비처리다차추비형성적공담규률상사。공석갑비부석방23.2%36.0%,배경온도대우공석갑비적석방촉진작용흔소。수획후토양초태담적잔류주요집중재표층(0—20 cm)화차표층(20—40 cm),점0—100 cm토층적87.1%;0—60 cm토층내,CN3처리적NO3--N잔류량여습관시비상당,이CN1화CN2처리적NO3--N잔류비습관시비감소37.3%55.0%,유효강저료초태담향하림세。시비증가료각처리표층토양중적갑함량,표층이하각처리적갑함량차별불대。결론3개전용비처리중공석비일차성시용불부절약료시비시간화노동성본,이차재과실팽대기제공료충족적담소공응,실현료여작물담소흡수적동보。공석전용비배방1화배방2가이제공합리적담소공응,재강저노동투입화절수적정황하,번가산량화과실품질불강저,병감소료초태담적림세손실。
Objectives]Excessively high nitrogen fertilization and irrigation in the intensive greenhouse vegetable production have not only brought environment pollution, but also increased the cost of the production.Reducing thefertilizer and labor inputs and increasing crop yields in this production system are urgently needed.The specialfertilizer based on controlled-release fertilizer (CRF) and its fertilization strategy provide a new technical approachfor solving this problem.An experiment was conducted in a plastic greenhouse in Beijing suburb to evaluate theeffects on tomato yield, fruit quality, nitrogen and potassium uptakes and soil residual NO-3 -N and K with threecontrolled-release special fertilizers and traditional fertilizers.[Methods]Six treatments were included in thisstudy, no fertilizer N treatment (CK), manure fertilizer (MN), traditional fertilization (TN), controlled-releasespecial fertilizerⅠ(CN1), controlled-release special fertilizerⅡ(CN2)and controlled-release special fertilizer Ⅲ(CN3).No nitrogen was used in the CK treatment, and only manure was applied in the MN treatment.80%controlled-release nitrogen and 20% available nitrogen were mixed as a single basal application before thetransplanting in the three controlled-release special fertilizer treatments, with the same nitrogen rate as thetraditional fertilization treatment at N 300 kg/ha.Except for CK, manure amount applied in other treatments was 8t/ha.CRF was self-made polymer-coated urea (N 42%) and potassium sulfate (K2 O 47%).Three kinds ofcoated urea, two delayed release and one liner release, and two liner-release coated potassium fertilizers were usedto form three special fertilizers with different mixing ratios.Self-pressure drip irrigation systems were adopted, andeach plot installed a drip line.Six times irrigation was applied, irrigation events occurred at the day of transplantingand 44, 65, 73, 79 and 89 days after the transplanting.Each plot received the same amount of irrigation, with 202mm in total.The plot area was 24 m2 , 1.4 m wide.Three replicates for each treatment were laid out in a randomdesign.High seedbed cultivation was used, two rows per seedbed, 0.40 m between plants, 0.40 m between tworows.[Results]The results show that the fruit yields of tomato are 79.1-87.2 t/ha, and there are no significantdifferences among all treatments.Higher nitrate concentration and lower Vc content of fruits are found in the CN3treatment compared with other treatments, which shows a decrease in tomato quality.The sigmoid N released trendsof three CRF treatments show a small nitrogen release at the early stage and more in the later, with a mineral Nsupply of N 102-247 kg/ha during the fruit enlargement stage which is similar to the N supply of traditionaltreatment with several N topdressings.However, only 23.2% to 36.0% of the controlled-release potassiumfertilizers are released and there is little effect of environmental temperature on the release of coated potassiumfertilizers.After the harvest, soil nitrate is concentrated in the top layer(0-20 cm) and the sub-top layer(20-40cm),where nitrate accumulation accounts for 87.1% of the total nitrate in 0 to 100 cm soil layer.In 0-60 cm soillayer, nitrate accumulation in the CN3 treatment is almost the same as that in the TN treatment, whereas for theCN1 and CN2 treatments, the accumulation amounts are 37% to 55% less than that of the TN treatment, resultingin less nitrate leaching to the deeper soil layer.The exchangeable K content in the top soil layer is increased in alltreatments due to potassium fertilizers application.There are no significant differences in potassium content for 20-100 cm soil layer among all treatments.[Conclusions]The single basal application of special fertilizers in the threeCRF treatments saves fertilization time and labor input, and provides adequate nitrogen supply in the fruitenlargement period, which results in synchronization with the crop nitrogen uptake.The controlled-release specialfertilizerⅠand fertilizerⅡcan provide reasonable nitrogen supply without any topdressing, whereby nitrate leachingloss, irrigation water and labor input are reduced without yield losses.