植物营养与肥料学报
植物營養與肥料學報
식물영양여비료학보
PLANT NUTRITION AND FERTILIZER SCIENCE
2014年
5期
1280-1287
,共8页
硅%植物%病菌%防御%物理机制%生物化学机制%分子机制
硅%植物%病菌%防禦%物理機製%生物化學機製%分子機製
규%식물%병균%방어%물리궤제%생물화학궤제%분자궤제
silicon%plant%pathogen%resistance%physical mechanism%biochemical mechanism%molecular mechanism
目的硅素营养增强作物对病虫害的防御能力已得到充分证实,但其作用机理至今仍然没有明确。本文对国内外有关硅素营养与作物病害发展的相互关系及相关机理的最新研究进展进行了归纳总结,为通过植物营养调节技术来提高作物病害防御能力的研究提供理论支撑。内容土壤有效硅包括土壤溶液中的单硅酸和易转化为单硅酸的盐类,土壤中有效硅含量一般在50260 mg/kg。硅虽然不是植物生长发育的必需矿质营养元素,但是硅在减轻植物多种生物和非生物胁迫以及提高植物对病菌的抵抗能力等方面起着重要作用。施硅可以显著地抑制水稻稻瘟病、纹枯病、白叶枯病、胡麻叶斑病,小麦、黄瓜、番茄等植物白粉病等多种病害的发生。关于硅调节植物抗病性的机理,首先提出了机械或物理屏障假设,认为施硅促进了细胞硅化作用的增强,细胞壁角质-硅双层以及表皮细胞乳突的增强,对病菌的入侵起到了物理防御作用。但随着研究的深入,发现物理屏障并非唯一机制,而后提出硅积极参与了生物化学防御过程,发现硅可以诱导感病植物产生酚醛类、黄酮类等抗毒素物质,以及施硅可以提高植物中几丁质酶、过氧化物酶、多酚氧化酶的活性、苯丙氨酸解氨酶等感病植物中病程相关蛋白酶的活性,从而通过化学防御过程提高植物对病害的抵抗能力。随着现代分子技术的发展,从基因组、转录组水平对其防御机制进行了阐明。研究认为硅通过主动的上调感病植物防卫基因及病程相关蛋白基因的表达,以应对病菌侵染。硅诱导植物产生乙烯、茉莉酸、活性氧等系列信号,使植物处于预激活化状态,从而减轻生物胁迫,但是硅在调节植物胁迫信号转导方面的机制还需要深入的研究。结论在缺硅土壤中施用硅肥,可以增强作物对病害的抵抗能力,从而大量降低杀菌剂的使用。关于硅调节植物抗病性机理,不能单一归因于某一方面,物理屏障防御机制与生物化学防御过程兼在。硅可能与关键的植物胁迫信号系统相互作用,而最终诱导产生对病原菌的抵抗,但是这方面的确切机制还不是很清楚,是今后的研究重点。
目的硅素營養增彊作物對病蟲害的防禦能力已得到充分證實,但其作用機理至今仍然沒有明確。本文對國內外有關硅素營養與作物病害髮展的相互關繫及相關機理的最新研究進展進行瞭歸納總結,為通過植物營養調節技術來提高作物病害防禦能力的研究提供理論支撐。內容土壤有效硅包括土壤溶液中的單硅痠和易轉化為單硅痠的鹽類,土壤中有效硅含量一般在50260 mg/kg。硅雖然不是植物生長髮育的必需礦質營養元素,但是硅在減輕植物多種生物和非生物脅迫以及提高植物對病菌的牴抗能力等方麵起著重要作用。施硅可以顯著地抑製水稻稻瘟病、紋枯病、白葉枯病、鬍痳葉斑病,小麥、黃瓜、番茄等植物白粉病等多種病害的髮生。關于硅調節植物抗病性的機理,首先提齣瞭機械或物理屏障假設,認為施硅促進瞭細胞硅化作用的增彊,細胞壁角質-硅雙層以及錶皮細胞乳突的增彊,對病菌的入侵起到瞭物理防禦作用。但隨著研究的深入,髮現物理屏障併非唯一機製,而後提齣硅積極參與瞭生物化學防禦過程,髮現硅可以誘導感病植物產生酚醛類、黃酮類等抗毒素物質,以及施硅可以提高植物中幾丁質酶、過氧化物酶、多酚氧化酶的活性、苯丙氨痠解氨酶等感病植物中病程相關蛋白酶的活性,從而通過化學防禦過程提高植物對病害的牴抗能力。隨著現代分子技術的髮展,從基因組、轉錄組水平對其防禦機製進行瞭闡明。研究認為硅通過主動的上調感病植物防衛基因及病程相關蛋白基因的錶達,以應對病菌侵染。硅誘導植物產生乙烯、茉莉痠、活性氧等繫列信號,使植物處于預激活化狀態,從而減輕生物脅迫,但是硅在調節植物脅迫信號轉導方麵的機製還需要深入的研究。結論在缺硅土壤中施用硅肥,可以增彊作物對病害的牴抗能力,從而大量降低殺菌劑的使用。關于硅調節植物抗病性機理,不能單一歸因于某一方麵,物理屏障防禦機製與生物化學防禦過程兼在。硅可能與關鍵的植物脅迫信號繫統相互作用,而最終誘導產生對病原菌的牴抗,但是這方麵的確切機製還不是很清楚,是今後的研究重點。
목적규소영양증강작물대병충해적방어능력이득도충분증실,단기작용궤리지금잉연몰유명학。본문대국내외유관규소영양여작물병해발전적상호관계급상관궤리적최신연구진전진행료귀납총결,위통과식물영양조절기술래제고작물병해방어능력적연구제공이론지탱。내용토양유효규포괄토양용액중적단규산화역전화위단규산적염류,토양중유효규함량일반재50260 mg/kg。규수연불시식물생장발육적필수광질영양원소,단시규재감경식물다충생물화비생물협박이급제고식물대병균적저항능력등방면기착중요작용。시규가이현저지억제수도도온병、문고병、백협고병、호마협반병,소맥、황과、번가등식물백분병등다충병해적발생。관우규조절식물항병성적궤리,수선제출료궤계혹물리병장가설,인위시규촉진료세포규화작용적증강,세포벽각질-규쌍층이급표피세포유돌적증강,대병균적입침기도료물리방어작용。단수착연구적심입,발현물리병장병비유일궤제,이후제출규적겁삼여료생물화학방어과정,발현규가이유도감병식물산생분철류、황동류등항독소물질,이급시규가이제고식물중궤정질매、과양화물매、다분양화매적활성、분병안산해안매등감병식물중병정상관단백매적활성,종이통과화학방어과정제고식물대병해적저항능력。수착현대분자기술적발전,종기인조、전록조수평대기방어궤제진행료천명。연구인위규통과주동적상조감병식물방위기인급병정상관단백기인적표체,이응대병균침염。규유도식물산생을희、말리산、활성양등계렬신호,사식물처우예격활화상태,종이감경생물협박,단시규재조절식물협박신호전도방면적궤제환수요심입적연구。결론재결규토양중시용규비,가이증강작물대병해적저항능력,종이대량강저살균제적사용。관우규조절식물항병성궤리,불능단일귀인우모일방면,물리병장방어궤제여생물화학방어과정겸재。규가능여관건적식물협박신호계통상호작용,이최종유도산생대병원균적저항,단시저방면적학절궤제환불시흔청초,시금후적연구중점。
Objectives]It is well documented that silicon ( Si) has beneficial effects on disease and pest resistance of plant species, but the mechanism has not been illuminated clearly and definitely.We summarized new advance and perspectives about the interrelation and mechanisms of plant silicon nutrient and disease development in this article.We aimed to provide theoretical support through adjusting plant nutrient to increase disease resistance of plant .[Contents] Plant-available Si in soil includes silicic acid in soil solution and silicic slats which transform to silicic acid easily and the concentration of plant-available Si in soil is 50-260 mg/kg.Although Si has not been recognized as an essential element for plant growth, its beneficial effects have been demonstrated for a wide variety of plant species under abiotic and biotic stress conditions.Silicon can increase the resistance of plant disease, such as rice blast, rice sheath blight, rice bacterial leaf blight, rice brown spot, powdery mildew and so on.In regard to mechanisms of silicon-mediated plant resistance to pathogen, three kinds of mechanisms have been proposed.The first hypothesis proposed is mechanical or physical barrier, which claims that silicon application leads to more intensive cell silicification, as well as the formation of cuticle-Si double layer and papilla on rice leaf epidermis cells thus impeding pathogen penetration. The second mechanism is that silicon application induces more phytoalexins accumulation in plant epidermal cells.Meanwhile, it is found that silicon application enhanced the activities of chitinase, peroxidase, polyphenoloxidase and phenylalanine ammonia lyase.With the development of molecular technique, more studies involve using gene microarray to analyze the interaction between silicon application and pathogen inoculation on the transcriptional profile of plant.It seems to suggest that Si-treated plants react to pathogen inoculation through the up-regulation of defense-and pathogenesis-related genes.When plant suffers disease stress, Si could induce plant produce some signals such as acetic acid, jasmonic acid and active oxygen which make plant at pre-activated condition.However, further studies are needed for exploring the detailed mechanisms by which Si mediates plant stress-signaling transduction.[Conclusions] Application of Si fertilizer to fields is an environmentally-friendly alternative approach to control plant disease, especially in soils where plant-available Si is very low.Si inhibits plant disease through biochemical reaction and the role of Si as physical barrier. Silicon may have interaction with the key stress-signaling transduction system, further studies are needed for exploring the detailed mechanisms of Si mediating plant stress-signaling transduction.