中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2014年
12期
2995-3001
,共7页
贵星卉%叶凌英%孙大翔%顾刚%蒋海春%张新明
貴星卉%葉凌英%孫大翔%顧剛%蔣海春%張新明
귀성훼%협릉영%손대상%고강%장해춘%장신명
2519A铝合金%断续时效%应力腐蚀敏感性%显微组织
2519A鋁閤金%斷續時效%應力腐蝕敏感性%顯微組織
2519A려합금%단속시효%응력부식민감성%현미조직
2519A aluminum alloy%interrupted aging%stress corrosion susceptibility%microstructure
通过双悬臂梁(DCB)应力腐蚀试验、极化曲线测试及透射电镜观察研究断续时效对2519A铝合金抗应力腐蚀性能的影响。结果表明:断续时效T9I6工艺下2519A铝合金的应力腐蚀开裂门槛应力强度因子为29.07 MPa?m1/2,比T87态铝合金的降低了4.79 MPa?m1/2。与T87态铝合金相比,T9I6态铝合金极化电阻较小,极化电流较大。合金经T9I6处理后形成大量细小的沉淀相,与T87态铝合金相比,该合金中无沉淀析出带(PFZ)较窄,有利于抗应力腐蚀性能的提高。但T9I6工艺在低温保温阶段于晶界形成的大量细小GP区,再时效后成长为较连续的链状θ′(θ)相,形成腐蚀通道,加速腐蚀的进行。这两方面的竞争作用导致2519A-T9I6铝合金的抗应力腐蚀性能与T87态铝合金的相比略有下降,但其力学性能仍远高于T87态铝合金的。
通過雙懸臂樑(DCB)應力腐蝕試驗、極化麯線測試及透射電鏡觀察研究斷續時效對2519A鋁閤金抗應力腐蝕性能的影響。結果錶明:斷續時效T9I6工藝下2519A鋁閤金的應力腐蝕開裂門檻應力彊度因子為29.07 MPa?m1/2,比T87態鋁閤金的降低瞭4.79 MPa?m1/2。與T87態鋁閤金相比,T9I6態鋁閤金極化電阻較小,極化電流較大。閤金經T9I6處理後形成大量細小的沉澱相,與T87態鋁閤金相比,該閤金中無沉澱析齣帶(PFZ)較窄,有利于抗應力腐蝕性能的提高。但T9I6工藝在低溫保溫階段于晶界形成的大量細小GP區,再時效後成長為較連續的鏈狀θ′(θ)相,形成腐蝕通道,加速腐蝕的進行。這兩方麵的競爭作用導緻2519A-T9I6鋁閤金的抗應力腐蝕性能與T87態鋁閤金的相比略有下降,但其力學性能仍遠高于T87態鋁閤金的。
통과쌍현비량(DCB)응력부식시험、겁화곡선측시급투사전경관찰연구단속시효대2519A려합금항응력부식성능적영향。결과표명:단속시효T9I6공예하2519A려합금적응력부식개렬문함응력강도인자위29.07 MPa?m1/2,비T87태려합금적강저료4.79 MPa?m1/2。여T87태려합금상비,T9I6태려합금겁화전조교소,겁화전류교대。합금경T9I6처리후형성대량세소적침정상,여T87태려합금상비,해합금중무침정석출대(PFZ)교착,유리우항응력부식성능적제고。단T9I6공예재저온보온계단우정계형성적대량세소GP구,재시효후성장위교련속적련상θ′(θ)상,형성부식통도,가속부식적진행。저량방면적경쟁작용도치2519A-T9I6려합금적항응력부식성능여T87태려합금적상비략유하강,단기역학성능잉원고우T87태려합금적。
The influence of interrupted aging on the stress corrosion resistance of 2519A aluminum alloy investigated by double cantilever beam (DCB) test, polarization curve test and transmission electron microscopy(TEM). The results show that the stress corrosion cracking threshold of 2519A-T9I6 aluminum alloy is 29.07 MPa?m 1/2, decreased by 4.79 MPa?m1/2 when compared to 2519-T87 aluminum alloy. In addition, 2519A-T9I6 aluminum alloy has a smaller polarization resistance and a higher polarization current than 2519-T87 aluminum alloy. On one hand, after T9I6 treatment, 2519A aluminum alloy produces plenty of finer precipitates and narrower precipitate-free zones (PFZs) than 2519-T87 aluminum alloy, which results in the increase of the stress corrosion resistance. On the other hand, the numerous, finer and denser GP zone that created during the process of interrupted aging at a low temperature transforms into continuous θ′(θ) phase, which leads to the increase of the corrosion channel after the re-aging process. So, the velocity of corrosion is accelerated. Because of these two competing reasons, the stress corrosion resistance of 2519A-T9I6 aluminum alloy are just a little lower than that of 2519A-T87 aluminum alloy, while the mechanical properties of 2519A-T9I6 aluminum alloy is much higher than those of 2519A-T87 aluminum alloy.