仪器仪表学报
儀器儀錶學報
의기의표학보
CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT
2014年
12期
2835-2842
,共8页
孙洁娣%肖启阳%温江涛%杨依光
孫潔娣%肖啟暘%溫江濤%楊依光
손길제%초계양%온강도%양의광
管道泄漏孔径识别%局域均值分解%有效值熵%支持向量机%泄漏定位
管道洩漏孔徑識彆%跼域均值分解%有效值熵%支持嚮量機%洩漏定位
관도설루공경식별%국역균치분해%유효치적%지지향량궤%설루정위
pipeline leak aperture recognition%LMD%RMS entropy%SVM%leak location
提出一种基于局域均值分解的RMS熵及时延估计的天然气管道泄漏孔径识别及定位方法。该方法首先对泄漏信号进行 LMD 分解,得到若干具有物理意义的 PF 分量并计算其有效值,进而结合信息熵的概念得出不同泄漏孔径的RMS 熵,将不同孔径泄漏信号的多个 RMS 熵组成特征向量输入 SVM 进行识别。为提高互相关法定位精度,提出根据LMD分解结果的峭度特征进行重构再进行互相关获取时延信息,并结合泄漏信号的传播速度,实现泄漏点定位。实验结果表明该方法能够实现管道泄漏孔径有效识别及定位,且与基于 EMD 的 RMS熵方法相比,识别效果更好,较直接相关法的定位精度明显提高。
提齣一種基于跼域均值分解的RMS熵及時延估計的天然氣管道洩漏孔徑識彆及定位方法。該方法首先對洩漏信號進行 LMD 分解,得到若榦具有物理意義的 PF 分量併計算其有效值,進而結閤信息熵的概唸得齣不同洩漏孔徑的RMS 熵,將不同孔徑洩漏信號的多箇 RMS 熵組成特徵嚮量輸入 SVM 進行識彆。為提高互相關法定位精度,提齣根據LMD分解結果的峭度特徵進行重構再進行互相關穫取時延信息,併結閤洩漏信號的傳播速度,實現洩漏點定位。實驗結果錶明該方法能夠實現管道洩漏孔徑有效識彆及定位,且與基于 EMD 的 RMS熵方法相比,識彆效果更好,較直接相關法的定位精度明顯提高。
제출일충기우국역균치분해적RMS적급시연고계적천연기관도설루공경식별급정위방법。해방법수선대설루신호진행 LMD 분해,득도약간구유물리의의적 PF 분량병계산기유효치,진이결합신식적적개념득출불동설루공경적RMS 적,장불동공경설루신호적다개 RMS 적조성특정향량수입 SVM 진행식별。위제고호상관법정위정도,제출근거LMD분해결과적초도특정진행중구재진행호상관획취시연신식,병결합설루신호적전파속도,실현설루점정위。실험결과표명해방법능구실현관도설루공경유효식별급정위,차여기우 EMD 적 RMS적방법상비,식별효과경호,교직접상관법적정위정도명현제고。
Aiming at natural gas pipeline leak problem, a leak apertures recognition and location method based on RMS (root mean square) entropy and time delay estimation is presented by analyzing local mean decomposition (LMD) results. The leak signals are decomposed by LMD and several PF (product function) components with clearly physical meaning are obtained. The PF components RMS is calculated, which combines information entropy to acquire RMS entropy ofdifferent leak apertures. Several RMS entropy values are chosen as the feature vectors and input to the SVM to achieve the identification. In order to improve the location accuracy of cross-correlation, the kurtosis of PF components is analyzed, and leak signals are constructed based on principal PFs to improve time delay estimation accuracy. Combining the stress wave velocity, the leak location is caccomplished. Experimental results show the proposed methods with LMD analysis can effectively identify apertures and locate the leak, and the recognition result is better than the RMS entropy based on EMD. Location accuracy is obviously improved than the direct cross-correlation method.