红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
12期
3861-3865
,共5页
中波红外%长波红外%推扫成像%性能分析%卫星对地观测
中波紅外%長波紅外%推掃成像%性能分析%衛星對地觀測
중파홍외%장파홍외%추소성상%성능분석%위성대지관측
MWIR%LWIR%pushbroom imaging%performance analysis%satellite earth observation
基于长线阵中波红外和长波红外探测器的推扫成像技术,是实现高空间分辨率和高温度分辨率卫星对地观测的技术途径之一。随着长线阵红外探测器的发展,该技术受到高度关注,并已在一些领域得到应用。介绍了中波红外和长波红外谱段成像特点以及基于长线阵中波红外和长波红外探测器的卫星推扫成像技术发展现状。重点根据中波红外和长波红外谱段的波长、温度为300 K目标的辐射强度以及光学系统和探测器参数,分析了它们的成像性能,包括调制传递函数(MTF)、地面像元分辨率(GSD)和噪声等效温差(NETD)。对于常温目标,在积分时间足够长的情况下,保持相同的MTF,中波红外比长波红外推扫成像可实现更高的空间分辨率和温度分辨率。结合分析结果,对充分发挥这两个谱段的成像性能提出了建议。
基于長線陣中波紅外和長波紅外探測器的推掃成像技術,是實現高空間分辨率和高溫度分辨率衛星對地觀測的技術途徑之一。隨著長線陣紅外探測器的髮展,該技術受到高度關註,併已在一些領域得到應用。介紹瞭中波紅外和長波紅外譜段成像特點以及基于長線陣中波紅外和長波紅外探測器的衛星推掃成像技術髮展現狀。重點根據中波紅外和長波紅外譜段的波長、溫度為300 K目標的輻射彊度以及光學繫統和探測器參數,分析瞭它們的成像性能,包括調製傳遞函數(MTF)、地麵像元分辨率(GSD)和譟聲等效溫差(NETD)。對于常溫目標,在積分時間足夠長的情況下,保持相同的MTF,中波紅外比長波紅外推掃成像可實現更高的空間分辨率和溫度分辨率。結閤分析結果,對充分髮揮這兩箇譜段的成像性能提齣瞭建議。
기우장선진중파홍외화장파홍외탐측기적추소성상기술,시실현고공간분변솔화고온도분변솔위성대지관측적기술도경지일。수착장선진홍외탐측기적발전,해기술수도고도관주,병이재일사영역득도응용。개소료중파홍외화장파홍외보단성상특점이급기우장선진중파홍외화장파홍외탐측기적위성추소성상기술발전현상。중점근거중파홍외화장파홍외보단적파장、온도위300 K목표적복사강도이급광학계통화탐측기삼수,분석료타문적성상성능,포괄조제전체함수(MTF)、지면상원분변솔(GSD)화조성등효온차(NETD)。대우상온목표,재적분시간족구장적정황하,보지상동적MTF,중파홍외비장파홍외추소성상가실현경고적공간분변솔화온도분변솔。결합분석결과,대충분발휘저량개보단적성상성능제출료건의。
Pushbroom imaging technology based on long linear array MWIR and LWIR detectors is one of the major technical solutions to achieve high spatial resolution and high temperature resolution satellite earth observation. With the development of long linear array infrared detectors, great attention has been given to this technology and it has been applied in some areas. The characteristics of MWIR and LWIR imaging were introduced. The current status of satellite pushbroom imaging based on long linear array MWIR and LWIR detectors was presented. Emphasis was put on the analysis of MWIR and LWIR imaging performances, including modulation transfer function (MTF), ground sampled distance (GSD), and noise equivalent temperature difference (NETD), according to their wavelength, radiation intensity of object with a temperature of 300 K, and parameters of optics and detectors. For objects with ambient temperature, if integration time was long enough, the MWIR pushbroom imaging can achieve higher spatial resolution and temperature resolution than LWIR under the same MTF. Some suggestions for improving MWIR and LWIR imaging performances were given according to the analysis result.