北京工业大学学报
北京工業大學學報
북경공업대학학보
JOURNAL OF BEIJING POLYTECHNIC UNIVERSITY
2015年
1期
42-47
,共6页
整体最优阈值%机器视觉%车道检测%道路识别%智能车辆
整體最優閾值%機器視覺%車道檢測%道路識彆%智能車輛
정체최우역치%궤기시각%차도검측%도로식별%지능차량
overall optimal threshold%machine vision%lane detection%road recognition%intelligent vehicle
针对现有车道线识别算法难以自适应地匹配图像,在车辆过弯途中识别率低,鲁棒性和实时性较差的问题,提出并实现了一种整体最优阈值的快速车道线识别算法。该算法首先对图像进行自适应二值化分割;然后对图像中的感兴趣区域进行提取;提出逐行检索的方法进行车道线内侧特征点的筛选,从而得到实际车道的左右标志线参数以进行道路模型重建。结果表明:区别于以往常用的霍夫变换,此方法具有更好的实时性及准确性,可在车辆过弯途中为系统提供更多的有效信息。
針對現有車道線識彆算法難以自適應地匹配圖像,在車輛過彎途中識彆率低,魯棒性和實時性較差的問題,提齣併實現瞭一種整體最優閾值的快速車道線識彆算法。該算法首先對圖像進行自適應二值化分割;然後對圖像中的感興趣區域進行提取;提齣逐行檢索的方法進行車道線內側特徵點的篩選,從而得到實際車道的左右標誌線參數以進行道路模型重建。結果錶明:區彆于以往常用的霍伕變換,此方法具有更好的實時性及準確性,可在車輛過彎途中為繫統提供更多的有效信息。
침대현유차도선식별산법난이자괄응지필배도상,재차량과만도중식별솔저,로봉성화실시성교차적문제,제출병실현료일충정체최우역치적쾌속차도선식별산법。해산법수선대도상진행자괄응이치화분할;연후대도상중적감흥취구역진행제취;제출축행검색적방법진행차도선내측특정점적사선,종이득도실제차도적좌우표지선삼수이진행도로모형중건。결과표명:구별우이왕상용적곽부변환,차방법구유경호적실시성급준학성,가재차량과만도중위계통제공경다적유효신식。
Existing lane identification algorithm is difficult to match the image adaptively. Due to low recognition rate when the vehicle cornering, poor robustness and poor real-time, an algorithm of fast lane identification is proposed and implemented based on overall optimal threshold. The algorithm first processes image by adaptive binarization. Then, the region of interest is extracted. The method of progressive retrieval for screening feature points inside lane is proposed and real parameters of lane are obtained to reconstruct the road model. Results show that being different from the previous common Hough transform, this method has better real-time performance and accuracy and can provide more useful information when the vehicle is cornering.