电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2015年
1期
61-66
,共6页
超短期负荷预测%集合经验模态分解%最小二乘支持向量机%贝叶斯框架%时间序列
超短期負荷預測%集閤經驗模態分解%最小二乘支持嚮量機%貝葉斯框架%時間序列
초단기부하예측%집합경험모태분해%최소이승지지향량궤%패협사광가%시간서렬
ultra-short-term load forecasting%ensemble empirical mode decomposition%least squares support vector machine%Bayesian framework%time series
针对传统的最小二乘支持向量机(LSSVM)参数不易确定且单一预测模型精度不高的问题,提出了一种基于集合经验模态分解(EEMD)与LSSVM的组合预测模型。首先利用EEMD将历史数据分解成一系列相对比较平稳的分量序列,再对各子序列分别建立合适的预测模型。进一步通过贝叶斯证据框架来优化LSSVM的参数,用贝叶斯推理确定模型参数、正规化超参数和核参数。然后将各子序列预测结果进行叠加得到最终预测值。最后,将该预测模型用于某一家庭超短期负荷预测中,仿真结果表明,该模型取得了比单一模型更好的预测效果。
針對傳統的最小二乘支持嚮量機(LSSVM)參數不易確定且單一預測模型精度不高的問題,提齣瞭一種基于集閤經驗模態分解(EEMD)與LSSVM的組閤預測模型。首先利用EEMD將歷史數據分解成一繫列相對比較平穩的分量序列,再對各子序列分彆建立閤適的預測模型。進一步通過貝葉斯證據框架來優化LSSVM的參數,用貝葉斯推理確定模型參數、正規化超參數和覈參數。然後將各子序列預測結果進行疊加得到最終預測值。最後,將該預測模型用于某一傢庭超短期負荷預測中,倣真結果錶明,該模型取得瞭比單一模型更好的預測效果。
침대전통적최소이승지지향량궤(LSSVM)삼수불역학정차단일예측모형정도불고적문제,제출료일충기우집합경험모태분해(EEMD)여LSSVM적조합예측모형。수선이용EEMD장역사수거분해성일계렬상대비교평은적분량서렬,재대각자서렬분별건립합괄적예측모형。진일보통과패협사증거광가래우화LSSVM적삼수,용패협사추리학정모형삼수、정규화초삼수화핵삼수。연후장각자서렬예측결과진행첩가득도최종예측치。최후,장해예측모형용우모일가정초단기부하예측중,방진결과표명,해모형취득료비단일모형경호적예측효과。
To solve the problem of the uncertain parameters and the low precision of the single forecasting model for the traditional least squares support vector machine (LSSVM), a combined forecasting model based on ensemble empirical mode decomposition (EEMD) and the LSSVM is proposed.Firstly, the historical datais decomposed into a series of relatively stable component of the sequence by the EEMD, and then the appropriate forecasting model is established for each component of the sequence. The parameters of the LSSVM are optimized through the Bayesian evidence framework. Bayesian inferences are used to determine model parameters, regularization hyper-parameters and kernel parameters. The results of each component forecasting are superimposed to obtain the final forecasting result.Finally, a household ultra-short-term load data is used to validate the model, and the simulation results show that this model has achieved better forecasting result than a single model.