南京师范大学学报(工程技术版)
南京師範大學學報(工程技術版)
남경사범대학학보(공정기술판)
JOURNAL OF NANJING NORMAL UNIVERSITY(ENGINEERING AND TECHNOLOGY)
2014年
4期
62-65,70
,共5页
图切%图像分割%最大流/最小割%能量函数
圖切%圖像分割%最大流/最小割%能量函數
도절%도상분할%최대류/최소할%능량함수
graph cuts%image segmentation%max-flow/min-cut%energy function
图切是一种基于图论的图像分割方法,它基于最大流/最小割定理实现能量函数最小化,其中能量函数的设定、实现的流程等方面可以改进以提高对不同图像的适应性。本文给出了一个基于图切的交互式图像分割方法,用户通过手绘封闭或不封闭线条的方法提供关于前景和背景的先验信息,在此基础上实现图像的分割。首先采用分水岭方法对输入图像进行预分割,把颜色相近的像素分为若干个小区域;设定合适的能量函数,将预分割的区域之间的颜色相似性、分割结果的平滑性等约束包含在能量函数中,利用求最大流的方法求取使得能量函数最小化的标签集合,从而实现图像的分割。实验证明,本文的方法能快速有效地实现交互式图像分割。
圖切是一種基于圖論的圖像分割方法,它基于最大流/最小割定理實現能量函數最小化,其中能量函數的設定、實現的流程等方麵可以改進以提高對不同圖像的適應性。本文給齣瞭一箇基于圖切的交互式圖像分割方法,用戶通過手繪封閉或不封閉線條的方法提供關于前景和揹景的先驗信息,在此基礎上實現圖像的分割。首先採用分水嶺方法對輸入圖像進行預分割,把顏色相近的像素分為若榦箇小區域;設定閤適的能量函數,將預分割的區域之間的顏色相似性、分割結果的平滑性等約束包含在能量函數中,利用求最大流的方法求取使得能量函數最小化的標籤集閤,從而實現圖像的分割。實驗證明,本文的方法能快速有效地實現交互式圖像分割。
도절시일충기우도론적도상분할방법,타기우최대류/최소할정리실현능량함수최소화,기중능량함수적설정、실현적류정등방면가이개진이제고대불동도상적괄응성。본문급출료일개기우도절적교호식도상분할방법,용호통과수회봉폐혹불봉폐선조적방법제공관우전경화배경적선험신식,재차기출상실현도상적분할。수선채용분수령방법대수입도상진행예분할,파안색상근적상소분위약간개소구역;설정합괄적능량함수,장예분할적구역지간적안색상사성、분할결과적평활성등약속포함재능량함수중,이용구최대류적방법구취사득능량함수최소화적표첨집합,종이실현도상적분할。실험증명,본문적방법능쾌속유효지실현교호식도상분할。
Graph cut is a kind of image segmentation method based on graph theory. Graph cut realizes the minimization of energy based on max-flow/min-cut theorem. In order to make the method more suitable to various images,the energy function and the work flow of the method can be improved. This paper presents an image segmentation method based on graph cuts. In this method,users can present information about foreground and background through hand drawing closed or unclosed curves,and the image segmentation can be further realized based on the information. Watersheds method is first used to pre-segment the input image,and the image is segmented into many small regions based on the color of the pixels. An appropriate energy function is set. The energy function incorporates the color similarity between different regions and smoothness of segmentation result. The label set which makes the energy function minimized is achieved through max-flow method. Thus the image segmentation is completed. The experimental results show that this method can realize interactive image segmentation quickly and effectively.