山东师范大学学报(自然科学版)
山東師範大學學報(自然科學版)
산동사범대학학보(자연과학판)
JOURNAL OF SHANGOND NORMAL UNIVERSITY(NATURAL SCIENCE)
2015年
1期
63-66
,共4页
signature%协同系统%串联%并联%IFR%n中取k系统
signature%協同繫統%串聯%併聯%IFR%n中取k繫統
signature%협동계통%천련%병련%IFR%n중취k계통
signature%coherent system%module%series%parallel%IFR%k-out-of-n structure
Signature是刻画协同系统结构特征的重要指标,它被定义为一个向量,其第i个分量为第i次元件失效导致系统失效的概率。然而,在大系统中,signature的计算往往比较复杂,从而导致其分布也就无从得知。年龄类通常被用来刻画非参数分布类的退化特征。在本文中,作为计算signature的一个初步探索,我们将转而求其次研究signature的年龄性质。本文中所涉及的协同系统均可分解为多个独立小模块的串联或并联结构。假定每个小模块的 signature 的年龄性质可被计算所得,我们证明了独立模块signature的IFR性在串联结构下具有封闭性,即大系统的signature也有IFR性。同时,我们通过给出一个反例,说明由独立模块通过并联组成的大系统的signature并不会继承小模块signature的IFR性。最后,基于本文研究,我们提出一个有关signature在串联结构下的封闭性一个猜想。
Signature是刻畫協同繫統結構特徵的重要指標,它被定義為一箇嚮量,其第i箇分量為第i次元件失效導緻繫統失效的概率。然而,在大繫統中,signature的計算往往比較複雜,從而導緻其分佈也就無從得知。年齡類通常被用來刻畫非參數分佈類的退化特徵。在本文中,作為計算signature的一箇初步探索,我們將轉而求其次研究signature的年齡性質。本文中所涉及的協同繫統均可分解為多箇獨立小模塊的串聯或併聯結構。假定每箇小模塊的 signature 的年齡性質可被計算所得,我們證明瞭獨立模塊signature的IFR性在串聯結構下具有封閉性,即大繫統的signature也有IFR性。同時,我們通過給齣一箇反例,說明由獨立模塊通過併聯組成的大繫統的signature併不會繼承小模塊signature的IFR性。最後,基于本文研究,我們提齣一箇有關signature在串聯結構下的封閉性一箇猜想。
Signature시각화협동계통결구특정적중요지표,타피정의위일개향량,기제i개분량위제i차원건실효도치계통실효적개솔。연이,재대계통중,signature적계산왕왕비교복잡,종이도치기분포야취무종득지。년령류통상피용래각화비삼수분포류적퇴화특정。재본문중,작위계산signature적일개초보탐색,아문장전이구기차연구signature적년령성질。본문중소섭급적협동계통균가분해위다개독립소모괴적천련혹병련결구。가정매개소모괴적 signature 적년령성질가피계산소득,아문증명료독립모괴signature적IFR성재천련결구하구유봉폐성,즉대계통적signature야유IFR성。동시,아문통과급출일개반례,설명유독립모괴통과병련조성적대계통적signature병불회계승소모괴signature적IFR성。최후,기우본문연구,아문제출일개유관signature재천련결구하적봉폐성일개시상。
The signature is an important structural characteristic of a coherent system,which is defined as thevector whose ith element is the probability that the system fails concurrently with the ith component failure.However,its computation is often rather involved and complex.In this paper,we turns to the study of the agingproperties of signatures,which serves as a preliminary exploration of computation of signatures.There are the caseswhen a coherent system of large order is obtained as a series or parallel structure built from ”small”modules withknown signature.Two types of series structures of separate modules are provided under which the closure propertyof IFR signatures can be inherited.Meanwhile,a counterexample is presented to show that the closure property ofIFR signatures does not exist under the formation of parallel structure of separate modules.Finally,a conjecture israised for further study on this topic.