桉树科技
桉樹科技
안수과기
EUCALYPT SCIENCE & TECHNOLOGY
2014年
4期
8-11
,共4页
吴志华%陈云峰%邓玉华%陶明有%蒋雪刚
吳誌華%陳雲峰%鄧玉華%陶明有%蔣雪剛
오지화%진운봉%산옥화%도명유%장설강
柳桉%生长特性%应力%弯矩%力学分析
柳桉%生長特性%應力%彎矩%力學分析
류안%생장특성%응력%만구%역학분석
Eucalyptus saligna%growth characteristics%stress%bending moment%mechanics analysis
以柳桉立木为研究对象,重点分析不同状况下桉树应力和弯矩分布情况。结果表明:柳桉立木随着树高的增加,树干断面积呈指数迅速减少,而树干材积和质量均呈一元二次方程的增加。柳桉立木随着树高的增加,树干各截面的应力呈线性降低,而所受弯矩呈非线性减少。外力载荷下作用点与树干基部间各截面的应力会迅速增加,也使得其间的弯矩(绝对值)急剧增大。外力载荷随着树高上移,相对而言不会增加树高基部的应力,但会显著增加作用力位点截面的应力,也显著提高树干基部的弯矩。柳桉在树高3.9 m以上树干部位,由于惯性矩产生的抗弯矩应力能力趋于减少,而小于弯矩应力,易使树干发生变形导致树干折断。
以柳桉立木為研究對象,重點分析不同狀況下桉樹應力和彎矩分佈情況。結果錶明:柳桉立木隨著樹高的增加,樹榦斷麵積呈指數迅速減少,而樹榦材積和質量均呈一元二次方程的增加。柳桉立木隨著樹高的增加,樹榦各截麵的應力呈線性降低,而所受彎矩呈非線性減少。外力載荷下作用點與樹榦基部間各截麵的應力會迅速增加,也使得其間的彎矩(絕對值)急劇增大。外力載荷隨著樹高上移,相對而言不會增加樹高基部的應力,但會顯著增加作用力位點截麵的應力,也顯著提高樹榦基部的彎矩。柳桉在樹高3.9 m以上樹榦部位,由于慣性矩產生的抗彎矩應力能力趨于減少,而小于彎矩應力,易使樹榦髮生變形導緻樹榦摺斷。
이류안립목위연구대상,중점분석불동상황하안수응력화만구분포정황。결과표명:류안립목수착수고적증가,수간단면적정지수신속감소,이수간재적화질량균정일원이차방정적증가。류안립목수착수고적증가,수간각절면적응력정선성강저,이소수만구정비선성감소。외력재하하작용점여수간기부간각절면적응력회신속증가,야사득기간적만구(절대치)급극증대。외력재하수착수고상이,상대이언불회증가수고기부적응력,단회현저증가작용력위점절면적응력,야현저제고수간기부적만구。류안재수고3.9 m이상수간부위,유우관성구산생적항만구응력능력추우감소,이소우만구응력,역사수간발생변형도치수간절단。
The stress and bending moment distributions in the stems ofEucalyptus salignatrees were studied under different conditions. The results showed that with increasing tree height, stem basal area decreases at an exponential rate, while both stem volume and weight were increased in a quadratic relationship to height. But with increasing height the stress of in the stem cross-sections decreased linearly, and bending moments declined in a nonlinear manner. When an external force was applied to the standing stem, the stress between the point of applied forceand cross-section oftrunk’s base increased rapidly, bending moment (absolute value) between them also increased sharply. When the external force moved to the crown, the stress at the base of the trunk base was not increased, but the bending moment from the base of the trunk base up to the point of force application increased significantly increased, and so was the shear force. At points on the stem above heights of 3.9 m, moment of inertia tended to decrease with increasing height due to the ability to generate anti-moment stress, resulting in more common stem deformation and breakage.