红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
z1期
30-35
,共6页
光学窗口%空间环境模拟系统%波像差%光程差
光學窗口%空間環境模擬繫統%波像差%光程差
광학창구%공간배경모의계통%파상차%광정차
optical window%space environment simulation system%wavefront error%optical path difference
光学窗口组件作为空间环境模拟系统与外界的接口,是不可或缺的重要组成部件。空间环境模拟系统共有两类光学窗口组件,针对两类光窗组件分别进行了结构方案设计。通过强度理论公式对光窗组件进行了强度校核,采用有限元分析软件计算了压力对光学玻璃表面变形的影响,并分析了光学玻璃表面变形对光窗组件光学性能的影响。计算结果表明:工作过程中,通光口径为椎150 mm的光窗组件光学玻璃产生的应力为0.82 MPa;通光口径为椎350 mm的光窗组件光学玻璃产生的应力为3.28 MPa,均满足强度要求。利用Zemax软件分析得到,通光口径为椎150 mm的光窗组件波像差PV值为λ/8;通过计算得到通光口径为椎350 mm的光窗组件在椎170 mm~椎190 mm环带区域内光程差为0.8 nm,均满足光学性能要求。因此,光学窗口组件结构方案设计既满足强度和可靠性要求,又满足光学性能要求,整个光学窗口组件安全可靠。
光學窗口組件作為空間環境模擬繫統與外界的接口,是不可或缺的重要組成部件。空間環境模擬繫統共有兩類光學窗口組件,針對兩類光窗組件分彆進行瞭結構方案設計。通過彊度理論公式對光窗組件進行瞭彊度校覈,採用有限元分析軟件計算瞭壓力對光學玻璃錶麵變形的影響,併分析瞭光學玻璃錶麵變形對光窗組件光學性能的影響。計算結果錶明:工作過程中,通光口徑為椎150 mm的光窗組件光學玻璃產生的應力為0.82 MPa;通光口徑為椎350 mm的光窗組件光學玻璃產生的應力為3.28 MPa,均滿足彊度要求。利用Zemax軟件分析得到,通光口徑為椎150 mm的光窗組件波像差PV值為λ/8;通過計算得到通光口徑為椎350 mm的光窗組件在椎170 mm~椎190 mm環帶區域內光程差為0.8 nm,均滿足光學性能要求。因此,光學窗口組件結構方案設計既滿足彊度和可靠性要求,又滿足光學性能要求,整箇光學窗口組件安全可靠。
광학창구조건작위공간배경모의계통여외계적접구,시불가혹결적중요조성부건。공간배경모의계통공유량류광학창구조건,침대량류광창조건분별진행료결구방안설계。통과강도이론공식대광창조건진행료강도교핵,채용유한원분석연건계산료압력대광학파리표면변형적영향,병분석료광학파리표면변형대광창조건광학성능적영향。계산결과표명:공작과정중,통광구경위추150 mm적광창조건광학파리산생적응력위0.82 MPa;통광구경위추350 mm적광창조건광학파리산생적응력위3.28 MPa,균만족강도요구。이용Zemax연건분석득도,통광구경위추150 mm적광창조건파상차PV치위λ/8;통과계산득도통광구경위추350 mm적광창조건재추170 mm~추190 mm배대구역내광정차위0.8 nm,균만족광학성능요구。인차,광학창구조건결구방안설계기만족강도화가고성요구,우만족광학성능요구,정개광학창구조건안전가고。
As the interface with the outside space environment simulation system, optical window is an indispensable important component parts. Space environment simulation system consists of two types of optical window. Based on both the windows, in this paper, components structure scheme design was car-ried out respectively. The strength theory formula was used to check the intensity of the window compo-nents; The finite element analysis software was used to calculate the effect of pressure on the optical glass surface deformation, and to analyze the impact of optical glass surface deformation results of the optical properties of the optical window assembly. The results show that aperture Ф150 mm, the work stress of optical window assembly is 0.82 MPa; Aperture Ф350 mm, the work stress is 3.28 MPa, meet the strength requirements. Zemax software was used to calculate the wavefront error(PV)of aperture Ф150 mm optical window assembly is λ/8; within Ф170 mm- Ф190 mm band area, the optical path difference of aperture Ф350mm optical window assembly is 0.8 nm; Both of them can satisfy the requirements of optical performance. Therefore, this design meets not only the strength and reliability requirements, but also the optical performance requirements, So the design of entire window assembly is safe and reliable.