中国水产科学
中國水產科學
중국수산과학
Journal of Fishery Sciences of China
2015年
1期
139-148
,共10页
辛少平%岑剑伟%李来好%杨贤庆%郝淑贤%魏涯%周婉君%王子怀
辛少平%岑劍偉%李來好%楊賢慶%郝淑賢%魏涯%週婉君%王子懷
신소평%잠검위%리래호%양현경%학숙현%위애%주완군%왕자부
河鲀毒素%柱前衍生%次溴酸钠%尿素%荧光检测
河鲀毒素%柱前衍生%次溴痠鈉%尿素%熒光檢測
하돈독소%주전연생%차추산납%뇨소%형광검측
tetrodotoxin (TTX)%pre-column derivatization%sodium bromate (NaBrO)%urea%fluorescence detection
在稀碱条件下,河鲀毒素(TTX)与次溴酸钠和尿素于一定温度下反应生成具有荧光性能的物质,该反应与已报道的TTX在强碱下生成C-9碱的碱解不同。本研究拟对该衍生反应所需条件进行详细研究,并尝试依据该反应建立鲀一种新型的河毒素荧光检测方法。荧光扫描光谱显示,产物最大激发波长(EX)为233 nm,最大发射波长(EM)为370 nm。该反应对pH要求比较严格,反应最适pH在11.6~11.9之间。对样品进行衍生检测获得最强荧光信号的条件为:次溴酸钠0.036~0.09 mol/L、尿素10~50 g/L、碳酸钠0.2~0.3 mol/L,温度75℃。样品检测结果显示,此衍生反应具有高度专一性,信号强度与 TTX 含量成正比,在0.01~10μg/mL 质量浓度范围内线性方程为y=109.17x+0.3965,线性相关系数为0.999。依据该衍生反应建立柱前衍生–高效液相色谱荧光检测法检测水产品中河鲀毒素含量,检测限达到20μg/kg,平行样品检测相对标准偏差为0.44%~7.25%,准确度高。对河鲀、虾虎鱼和织纹螺产品检测表明,该反应特异性强,不易出现假阳性,鲀可用于河毒素检测的确证。
在稀堿條件下,河鲀毒素(TTX)與次溴痠鈉和尿素于一定溫度下反應生成具有熒光性能的物質,該反應與已報道的TTX在彊堿下生成C-9堿的堿解不同。本研究擬對該衍生反應所需條件進行詳細研究,併嘗試依據該反應建立鲀一種新型的河毒素熒光檢測方法。熒光掃描光譜顯示,產物最大激髮波長(EX)為233 nm,最大髮射波長(EM)為370 nm。該反應對pH要求比較嚴格,反應最適pH在11.6~11.9之間。對樣品進行衍生檢測穫得最彊熒光信號的條件為:次溴痠鈉0.036~0.09 mol/L、尿素10~50 g/L、碳痠鈉0.2~0.3 mol/L,溫度75℃。樣品檢測結果顯示,此衍生反應具有高度專一性,信號彊度與 TTX 含量成正比,在0.01~10μg/mL 質量濃度範圍內線性方程為y=109.17x+0.3965,線性相關繫數為0.999。依據該衍生反應建立柱前衍生–高效液相色譜熒光檢測法檢測水產品中河鲀毒素含量,檢測限達到20μg/kg,平行樣品檢測相對標準偏差為0.44%~7.25%,準確度高。對河鲀、蝦虎魚和織紋螺產品檢測錶明,該反應特異性彊,不易齣現假暘性,鲀可用于河毒素檢測的確證。
재희감조건하,하돈독소(TTX)여차추산납화뇨소우일정온도하반응생성구유형광성능적물질,해반응여이보도적TTX재강감하생성C-9감적감해불동。본연구의대해연생반응소수조건진행상세연구,병상시의거해반응건립돈일충신형적하독소형광검측방법。형광소묘광보현시,산물최대격발파장(EX)위233 nm,최대발사파장(EM)위370 nm。해반응대pH요구비교엄격,반응최괄pH재11.6~11.9지간。대양품진행연생검측획득최강형광신호적조건위:차추산납0.036~0.09 mol/L、뇨소10~50 g/L、탄산납0.2~0.3 mol/L,온도75℃。양품검측결과현시,차연생반응구유고도전일성,신호강도여 TTX 함량성정비,재0.01~10μg/mL 질량농도범위내선성방정위y=109.17x+0.3965,선성상관계수위0.999。의거해연생반응건립주전연생–고효액상색보형광검측법검측수산품중하돈독소함량,검측한체도20μg/kg,평행양품검측상대표준편차위0.44%~7.25%,준학도고。대하돈、하호어화직문라산품검측표명,해반응특이성강,불역출현가양성,돈가용우하독소검측적학증。
Tetrodotoxin (TTX), one of the most toxic natural neurotoxins found in several kinds of fishery products, can cause TTX poisoning. Therefore, detection methods for routine analysis of TTX should be developed. We found that TTX could be converted into a new compound with fluorescence properties by reaction with sodium bromate (NaBrO) and urea. The reaction was sensitive to the acidity level of the solution and the pH value needed to be strictly controlled between 11.6 and 11.9. The fluorescence scanning spectrum showed the fluorescent compound had maximum excitation wavelength of 233 nm and emission wavelength of 370 nm, and was not the product of alkaline degradation (quina-zoline). Hence, a new type of fluorescence detection method was developed for identifying TTX in aquatic products. After reaction with NaBrO (0.036–0.09 mol/L) and urea (10–50 g/L) in 0.2–0.3 mol/L sodium carbonate solution (Na2CO3) at 75℃, the TTX derivative solution was neutralized with 15% phosphoric acid and then detected by re-verse-phase high-performance liquid chromatography with a fluorescence detector. The result was quantified by the standard addition method. The detection limit was 20μg/kg and the relative standard deviation was 0.44%–7.25%. The method was specific, accurate, and sensitive, and can be used for identification of TTX determination.