天津大学学报
天津大學學報
천진대학학보
JOURNAL OF TIANJIN UNIVERSITY SCIENCE AND TECHNOLOGY
2015年
1期
49-55
,共7页
崔振辉%李林川%赵承利%杨挺
崔振輝%李林川%趙承利%楊挺
최진휘%리림천%조승리%양정
电力视频业务%流量分析%ARIMA%自相似
電力視頻業務%流量分析%ARIMA%自相似
전력시빈업무%류량분석%ARIMA%자상사
power video service%traffic analysis%autoregressive integrated moving average(ARIMA)%self-similarity
针对电力视频业务的流量特性,提出一种基于差分自回归移动平均(ARIMA)模型的电力视频业务流量分析和预测方法。首先利用差分法对视频流量数据进行平稳化处理,然后依据数据序列的自相关函数和偏自相关函数确定模型参数,从而建立能够有效预测电力视频业务流量的分析模型。仿真实验表明,该方法充分考虑了电力视频业务流量的自相似性、周期性、突发性及趋势性等特点,有效提高了流量预测拟合的精度。
針對電力視頻業務的流量特性,提齣一種基于差分自迴歸移動平均(ARIMA)模型的電力視頻業務流量分析和預測方法。首先利用差分法對視頻流量數據進行平穩化處理,然後依據數據序列的自相關函數和偏自相關函數確定模型參數,從而建立能夠有效預測電力視頻業務流量的分析模型。倣真實驗錶明,該方法充分攷慮瞭電力視頻業務流量的自相似性、週期性、突髮性及趨勢性等特點,有效提高瞭流量預測擬閤的精度。
침대전력시빈업무적류량특성,제출일충기우차분자회귀이동평균(ARIMA)모형적전력시빈업무류량분석화예측방법。수선이용차분법대시빈류량수거진행평은화처리,연후의거수거서렬적자상관함수화편자상관함수학정모형삼수,종이건립능구유효예측전력시빈업무류량적분석모형。방진실험표명,해방법충분고필료전력시빈업무류량적자상사성、주기성、돌발성급추세성등특점,유효제고료류량예측의합적정도。
Given the characteristics of power video services,a power video traffic analysis and prediction method was proposed based on the autoregressive integrated moving average(ARIMA)model. First,the video traffic data went through the smoothing process through different methods. Then the model parameters were determined by the autocorrelation function and partial autocorrelation function of the data sequence. Thus an effective prediction power video traffic analysis model was established. Simulation results show that the model can meet the characteristics of self-similarity,periodicity,suddenness and trends in power video traffic,and has effectively improved the fitting precision of traffic projections.