系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
SYSTEMS ENGINEERING AND ELECTRONICS
2015年
1期
24-30
,共7页
郭志%董春云%蔡远利%于振华
郭誌%董春雲%蔡遠利%于振華
곽지%동춘운%채원리%우진화
机动目标跟踪%交互多模型%平方根容积卡尔曼滤波%Markov 转移概率
機動目標跟蹤%交互多模型%平方根容積卡爾曼濾波%Markov 轉移概率
궤동목표근종%교호다모형%평방근용적잡이만려파%Markov 전이개솔
maneuvering target tracking%interacting multiple model(IMM)%square-root cubature Kalman filter(SRCKF)%Markov transition probability
给出了一种交互多模型(interacting multiple model,IMM)算法中 Markov 转移概率矩阵在线修正的方法,并将平方根容积卡尔曼滤波器(square-root cubature Kalman filter,SRCKF)引入到 IMM 算法中,提出一种时变转移概率的机动目标跟踪 IMM-SRCKF 算法。该算法利用当前量测中包含的模式信息,对 IMM 算法中的转移概率矩阵进行实时递推估计,避免了常规 IMM 算法中转移概率先验确定的困难,提高了模型切换速度和跟踪精度;同时,SRCKF 以目标状态协方差的平方根进行迭代更新,确保了滤波过程中协方差矩阵的对称性和半正定性,改善了数值精度和稳定性。仿真实验结果表明,该算法对机动目标的跟踪性能优于常规的 IMM 及 IMM-CKF算法。
給齣瞭一種交互多模型(interacting multiple model,IMM)算法中 Markov 轉移概率矩陣在線脩正的方法,併將平方根容積卡爾曼濾波器(square-root cubature Kalman filter,SRCKF)引入到 IMM 算法中,提齣一種時變轉移概率的機動目標跟蹤 IMM-SRCKF 算法。該算法利用噹前量測中包含的模式信息,對 IMM 算法中的轉移概率矩陣進行實時遞推估計,避免瞭常規 IMM 算法中轉移概率先驗確定的睏難,提高瞭模型切換速度和跟蹤精度;同時,SRCKF 以目標狀態協方差的平方根進行迭代更新,確保瞭濾波過程中協方差矩陣的對稱性和半正定性,改善瞭數值精度和穩定性。倣真實驗結果錶明,該算法對機動目標的跟蹤性能優于常規的 IMM 及 IMM-CKF算法。
급출료일충교호다모형(interacting multiple model,IMM)산법중 Markov 전이개솔구진재선수정적방법,병장평방근용적잡이만려파기(square-root cubature Kalman filter,SRCKF)인입도 IMM 산법중,제출일충시변전이개솔적궤동목표근종 IMM-SRCKF 산법。해산법이용당전량측중포함적모식신식,대 IMM 산법중적전이개솔구진진행실시체추고계,피면료상규 IMM 산법중전이개솔선험학정적곤난,제고료모형절환속도화근종정도;동시,SRCKF 이목표상태협방차적평방근진행질대경신,학보료려파과정중협방차구진적대칭성화반정정성,개선료수치정도화은정성。방진실험결과표명,해산법대궤동목표적근종성능우우상규적 IMM 급 IMM-CKF산법。
An on-line updating method of Markov transition probability for the interacting multiple model (IMM)algorithm is proposed,and the square-root cubature Kalman filter(SRCKF)is introduced into IMM,so a novel time-varying Markov transition IMM-SRCKF algorithm is obtained.Using real-time recursive estimation method based on the system mode information implicit in the current measurements,the proposed algorithm ef-fectively avoids the problem of prior determination of the Markov transition probability matrix in traditional IMM.Furthermore,SRCKF propagates the square root of the covariance in filter interaction so that it guaran-tees the symmetry and positive semi-definiteness of the covariance matrix and greatly improves the numerical stability and numerical accuracy.Simulation results show that the proposed algorithm has better tracking per-formance and higher efficiency compared with the conventional IMM and IMM-CKF.