人民黄河
人民黃河
인민황하
Yellow River
2015年
1期
46-49,53
,共5页
堤防工程%防渗加固%方案选择%实例推理%自组织特征映射神经网络
隄防工程%防滲加固%方案選擇%實例推理%自組織特徵映射神經網絡
제방공정%방삼가고%방안선택%실례추리%자조직특정영사신경망락
dyke%seepage control reinforcement%measure selection%case-based reasoning%SOFM
针对堤防工程防渗加固方法的优选问题,充分借助已有工程的加固案例,综合应用基于实例的推理(Case Based Reasoning,CBR)方法和自组织特征映射神经网络(SOFM),在对影响加固方法选择的主要因素分析基础上,研究建立加固工程和实例之间相似性的计算公式;利用自组织特征映射神经网络高度的自组织性和自适应性,对实例库中的实例进行动态聚类,提出以SOFM为检索机制的实例检索模型。将所述模型和方法应用于某实际工程,研究该堤防工程防渗加固方案生成的过程,分析模型和方法的有效性。算例分析表明:利用所建模型能够缩小实例检索的范围,提高检索的效率;有效利用了以往加固实例中积累的经验和知识,减少了对专家的依赖,可提高加固方法选择的效率和加固决策的智能化水平。
針對隄防工程防滲加固方法的優選問題,充分藉助已有工程的加固案例,綜閤應用基于實例的推理(Case Based Reasoning,CBR)方法和自組織特徵映射神經網絡(SOFM),在對影響加固方法選擇的主要因素分析基礎上,研究建立加固工程和實例之間相似性的計算公式;利用自組織特徵映射神經網絡高度的自組織性和自適應性,對實例庫中的實例進行動態聚類,提齣以SOFM為檢索機製的實例檢索模型。將所述模型和方法應用于某實際工程,研究該隄防工程防滲加固方案生成的過程,分析模型和方法的有效性。算例分析錶明:利用所建模型能夠縮小實例檢索的範圍,提高檢索的效率;有效利用瞭以往加固實例中積纍的經驗和知識,減少瞭對專傢的依賴,可提高加固方法選擇的效率和加固決策的智能化水平。
침대제방공정방삼가고방법적우선문제,충분차조이유공정적가고안례,종합응용기우실례적추리(Case Based Reasoning,CBR)방법화자조직특정영사신경망락(SOFM),재대영향가고방법선택적주요인소분석기출상,연구건립가고공정화실례지간상사성적계산공식;이용자조직특정영사신경망락고도적자조직성화자괄응성,대실례고중적실례진행동태취류,제출이SOFM위검색궤제적실례검색모형。장소술모형화방법응용우모실제공정,연구해제방공정방삼가고방안생성적과정,분석모형화방법적유효성。산례분석표명:이용소건모형능구축소실례검색적범위,제고검색적효솔;유효이용료이왕가고실례중적루적경험화지식,감소료대전가적의뢰,가제고가고방법선택적효솔화가고결책적지능화수평。
Based on the Case Based Reasoning (CBR)integrated with Self Organizing Feature Map (SOFM),the selection of seepage con-trol measures for dyke reinforcement was discussed in this paper. To make full use of existing reinforcement cases,after analyzing the main factors affecting the selection of seepage control measures,a formula computing the similarity between the reinforcement case and the existing case in the case library was set up. Due to the high quality of SOFM on self-organization and self-adaptation,which was adopted in the dynamic clustering for cases in the case library,a case retrieval model based on SOFM was presented. One real dyke reinforcement case was given to illustrate the working process of the model,after that the effectiveness of the model was analyzed. The case shows that the use of the model can narrow the retrieval range and improve retrieval efficiency. Meanwhile,because of the effective use of the experience and knowl-edge accumulated in the past reinforcement cases,the model can not only reduce the reliance on experts,but also improve the efficiency on reinforcement method selection and the intelligence level of decision-making.