中华医学杂志(英文版)
中華醫學雜誌(英文版)
중화의학잡지(영문판)
CHINESE MEDICAL JOURNAL
2015年
1期
91-97
,共7页
Epigallocatechin-3-gallate%Tea Catechins%Cholesterol%Green Tea Polyphenol(-)-epigallocatechin Gallate in Cultured Human Liver%Long Non-coding RNA
Background:Green tea has been shown to improve cholesterol metabolism in animal studies,but the molecular mechanisms underlying this function have not been fully understood.Long non-coding RNAs (lncRNAs) have recently emerged as a major class of regulatory molecules involved in a broad range of biological processes and complex diseases.Our aim was to identify important lncRNAs that might play an important role in contributing to the benefits of epigallocatechin-3-gallate (EGCG) on cholesterol metabolism.Methods:Microarrays was used to reveal the lncRNA and mRNA profiles in green tea polyphenol(-)-epigallocatechin gallate in cultured human liver (HepG2) hepatocytes treated with EGCG and bioinformatic analyses of the predicted target genes were performed to identify lncRNA-mRNA targeting relationships.RNA interference was used to investigate the role of lncRNAs in cholesterol metabolism.Results:The expression levels of 15 genes related to cholesterol metabolism and 285 lncRNAs were changed by EGCG treatment.Bioinformatic analysis found five matched lncRNA-mRNA pairs for five differentially expressed lncRNAs and four differentially expressed mRNA.In particular,the lncRNA4 T102202 and its potential targets mRNA-3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) were identified.Using a real-time polymerase chain reaction technique,we confirmed that EGCG down-regulated mRNA expression level of the HMGCR and up-regulated expression ofAT102202.After AT102202 knockdown in HepG2,we observed that the level of HMGCR expression was significantly increased relative to the scrambled small interfering RNA control (P < 0.05).Conclusions:Our results indicated that EGCG improved cholesterol metabolism and meanwhile changed the lncRNAs expression profile in HepG2 cells.LncRNAs may play an important role in the cholesterol metabolism.