中华创伤骨科杂志
中華創傷骨科雜誌
중화창상골과잡지
CHINESE JOURNAL OF ORTHOPAEDIC TRAUMA
2015年
1期
18-22
,共5页
叶堃%王金武%胡志刚%王成焘%干耀凯%韦建和%江川%邓源%李雨
葉堃%王金武%鬍誌剛%王成燾%榦耀凱%韋建和%江川%鄧源%李雨
협곤%왕금무%호지강%왕성도%간요개%위건화%강천%산원%리우
骨盆%假体与置入物%有限元分析%3D打印技术
骨盆%假體與置入物%有限元分析%3D打印技術
골분%가체여치입물%유한원분석%3D타인기술
Pelvis%Prostheses and implants%Finite element analysis%3D printing technology
目的 通过有限元分析的方法评价3D打印钛合金骨盆假体的生物力学性能. 方法 选取1例男性右侧髂骨巨大软骨肉瘤患者,拟行半骨盆切除人工半骨盆置换术.术前行CT和MRI检查,利用三维图像融合技术判断髂骨周围肿瘤侵袭范围,确定外科边缘及截骨平面,根据截骨后骨盆缺损范围利用计算机辅助设计(CAD)建立患者骨盆有限元模型,经过有限元分析后利用3D打印技术定制个性化钛合金骨盆假体.在Abaqus软件中对已建立的3D打印骨盆假体模型进行有限元分析,测量骨盆假体的yon Mises应力、相对位移和整个有限元模型的应力集中点. 结果 3D打印钛合金骨盆假体的最大yon Mises应力为25.29 MPa,远小于钛合金的屈服强度(950 MPa).应力集中区域为假体与骶骨连接钉孔附近.患者术后3个月逐渐弃拐行走,术后半年假体情况稳定,患者活动正常. 结论 根据有限元模型计算结果,3D打印钛合金骨盆假体可满足生物力学要求,计算结果与患者术后随访结果一致,该方法可为3D打印骨科内置物临床应用提供生物力学依据.
目的 通過有限元分析的方法評價3D打印鈦閤金骨盆假體的生物力學性能. 方法 選取1例男性右側髂骨巨大軟骨肉瘤患者,擬行半骨盆切除人工半骨盆置換術.術前行CT和MRI檢查,利用三維圖像融閤技術判斷髂骨週圍腫瘤侵襲範圍,確定外科邊緣及截骨平麵,根據截骨後骨盆缺損範圍利用計算機輔助設計(CAD)建立患者骨盆有限元模型,經過有限元分析後利用3D打印技術定製箇性化鈦閤金骨盆假體.在Abaqus軟件中對已建立的3D打印骨盆假體模型進行有限元分析,測量骨盆假體的yon Mises應力、相對位移和整箇有限元模型的應力集中點. 結果 3D打印鈦閤金骨盆假體的最大yon Mises應力為25.29 MPa,遠小于鈦閤金的屈服彊度(950 MPa).應力集中區域為假體與骶骨連接釘孔附近.患者術後3箇月逐漸棄枴行走,術後半年假體情況穩定,患者活動正常. 結論 根據有限元模型計算結果,3D打印鈦閤金骨盆假體可滿足生物力學要求,計算結果與患者術後隨訪結果一緻,該方法可為3D打印骨科內置物臨床應用提供生物力學依據.
목적 통과유한원분석적방법평개3D타인태합금골분가체적생물역학성능. 방법 선취1례남성우측가골거대연골육류환자,의행반골분절제인공반골분치환술.술전행CT화MRI검사,이용삼유도상융합기술판단가골주위종류침습범위,학정외과변연급절골평면,근거절골후골분결손범위이용계산궤보조설계(CAD)건립환자골분유한원모형,경과유한원분석후이용3D타인기술정제개성화태합금골분가체.재Abaqus연건중대이건립적3D타인골분가체모형진행유한원분석,측량골분가체적yon Mises응력、상대위이화정개유한원모형적응력집중점. 결과 3D타인태합금골분가체적최대yon Mises응력위25.29 MPa,원소우태합금적굴복강도(950 MPa).응력집중구역위가체여저골련접정공부근.환자술후3개월축점기괴행주,술후반년가체정황은정,환자활동정상. 결론 근거유한원모형계산결과,3D타인태합금골분가체가만족생물역학요구,계산결과여환자술후수방결과일치,해방법가위3D타인골과내치물림상응용제공생물역학의거.
Objective To evaluate the biomechanical properties of a titanium alloy pelvic prosthesis individually manufactured by 3D printing through finite element analysis.Methods A male patient with a huge chondrosarcoma at the right ilium was recruited for the present study who had been arranged for hemipelvectomy and artificial hemi-pelvic replacement.After the patient underwent CT and MRI examinations before operation,scope of tumor invasion around the ilium,surgical margins and plane for osteotomy were determined using the 3D image fusion technique.A finite element model of the pelvis of the patient was established on the basis of the defective area after pelvic osteotomy using computer aided design (CAD).After the finite element analysis,a customized titanium alloy pelvic prosthesis was manufactured using 3D printing technology.The software Abaqus was used to conduct finite element analysis of the model of the pelvic prosthesis manufactured by 3D printing.The von Mises stress,relative displacement and stress concentration point in the finite element model of the pelvis were measured and analyzed.Results The maximum von Mises stress in the titanium alloy pelvic prosthesis manufactured by 3D printing was 25.29 MPa,far smaller than the yield strength of titanium alloy (950 MPa).The stress concentration area was near the nail holes where the prosthesis and the sacrum were connected.The patient was able to walk without crutches 3 months post-surgery.After half a year,the implant was stable and the patient could perform normal activities.Conclusions The titanium alloy pelvic prosthesis individually manufactured by 3D printing based on the results of finite element analysis met the biomechanical requirements of a pelvis.The calculation results of finite element analysis were consistent with the postoperative follow-up outcomes of the patient.This method can provide biomechanical evidence for clinical application of 3D printing implants in orthopedics.