哈尔滨工程大学学报
哈爾濱工程大學學報
합이빈공정대학학보
JOURNAL OF HARBIN ENGINEERING UNIVERSITY
2015年
1期
6-11
,共6页
两层流体%内孤立波%直立圆柱体%载荷特性%数值模拟
兩層流體%內孤立波%直立圓柱體%載荷特性%數值模擬
량층류체%내고립파%직립원주체%재하특성%수치모의
two-layer fluid%internal solitary waves%vertical circular cylinder%load characteristics%numerical simulation
为研究直立圆柱体的内孤立波载荷特性,依据三类内孤立波理论( KdV、eKdV和MCC)的适用性条件,使用内孤立波诱导上下层深度平均水平速度作为入口条件,采用Navier?Stokes方程为流场控制方程,建立了两层流体中内孤立波对直立圆柱体强非线性作用的数值模拟方法。系列计算结果表明,数值模拟所得内孤立波波形及其振幅与相应理论和实验结果一致,并且直立圆柱体内孤立波水平力、垂向力及其力矩数值模拟结果与实验结果吻合。直立圆柱体内孤立波载荷由波浪压差力、粘性压差力和摩擦力构成,其中摩擦力很小,可以忽略;对水平力,其波浪压差力与粘性压差力量级相当,流体粘性的影响显著;对垂向力,粘性压差力很小,流体粘性影响可以忽略。
為研究直立圓柱體的內孤立波載荷特性,依據三類內孤立波理論( KdV、eKdV和MCC)的適用性條件,使用內孤立波誘導上下層深度平均水平速度作為入口條件,採用Navier?Stokes方程為流場控製方程,建立瞭兩層流體中內孤立波對直立圓柱體彊非線性作用的數值模擬方法。繫列計算結果錶明,數值模擬所得內孤立波波形及其振幅與相應理論和實驗結果一緻,併且直立圓柱體內孤立波水平力、垂嚮力及其力矩數值模擬結果與實驗結果吻閤。直立圓柱體內孤立波載荷由波浪壓差力、粘性壓差力和摩抆力構成,其中摩抆力很小,可以忽略;對水平力,其波浪壓差力與粘性壓差力量級相噹,流體粘性的影響顯著;對垂嚮力,粘性壓差力很小,流體粘性影響可以忽略。
위연구직립원주체적내고립파재하특성,의거삼류내고립파이론( KdV、eKdV화MCC)적괄용성조건,사용내고립파유도상하층심도평균수평속도작위입구조건,채용Navier?Stokes방정위류장공제방정,건립료량층류체중내고립파대직립원주체강비선성작용적수치모의방법。계렬계산결과표명,수치모의소득내고립파파형급기진폭여상응이론화실험결과일치,병차직립원주체내고립파수평력、수향력급기력구수치모의결과여실험결과문합。직립원주체내고립파재하유파랑압차력、점성압차력화마찰력구성,기중마찰력흔소,가이홀략;대수평력,기파랑압차력여점성압차역량급상당,류체점성적영향현저;대수향력,점성압차력흔소,류체점성영향가이홀략。
In order to investigate the characteristics of loads on the vertical circular cylinder due to internal solitary waves a numerical method is studied. According to the applicability conditions for three types of internal solitary wave theories including KdV, eKdV and MCC, a numerical method based on the Navier?Stokes equation in a two?layer fluid is presented to simulate the strongly nonlinear interaction of internal solitary waves with a vertical circular cylinder, where the velocity?inlet boundary is applied by use of the depth?averaged velocities in the upper?and low?er?layer fluids induced by the internal solitary wave. The result showed that the waveform and amplitude of the inter?nal solitary wave based on the present numerical method are in good agreement with the experimental and theoretical results. Numerical results for the horizontal and vertical forces, as well as torques on the vertical circular cylinder due to the internal solitary wave are also in good agreement with experimental results. It is shown by a series of cal?culations that the horizontal and vertical forces on the vertical circular cylinder can be divided into three compo?nents, including the wave and viscous pressure forces due to solitary waves. The friction force can in addition be neglected when the fraction force is a small amount. For the horizontal force, the order of the magnitude between the wave and viscous pressure forces is the same, which means the effect of the fluid viscosity is significant. For the vertical force, the component of the viscous pressure force is a small amount, which indicates that the effect of the fluid viscosity can be neglected.