哈尔滨工程大学学报
哈爾濱工程大學學報
합이빈공정대학학보
JOURNAL OF HARBIN ENGINEERING UNIVERSITY
2015年
1期
134-138
,共5页
任慧龙%于鹏垚%李辉%冯国庆
任慧龍%于鵬垚%李輝%馮國慶
임혜룡%우붕요%리휘%풍국경
舰船变形%流固耦合%三维水弹性方法%模态分析%变形响应%数值预报
艦船變形%流固耦閤%三維水彈性方法%模態分析%變形響應%數值預報
함선변형%류고우합%삼유수탄성방법%모태분석%변형향응%수치예보
ship deformation%fluid and structural interactions%3D hydroelastic method%modal analysis%fluid-structure interactions%angular deformation matrix%deformation response%numerical prediction
针对航行中舰船变形问题,采用三维水弹性理论实现了波浪中舰船的动态变形预报。通过拟合不同模态下船体有限元模型的节点位移,实现了将三维模态信息应用于广义流固耦合界面条件。建立了舰船在规则波中的广义水弹性运动方程,求解出各阶振动模态的主坐标。将各阶弹性模态主坐标与预报位置的角变形矩阵相乘,得到角变形响应。针对某实船,分别采用三维水弹性方法和三维刚体方法进行计算,通过对船体结构角变形响应的对比,验证了三维水弹性方法的正确性,同时也证明了该方法在计算效率上的优势。
針對航行中艦船變形問題,採用三維水彈性理論實現瞭波浪中艦船的動態變形預報。通過擬閤不同模態下船體有限元模型的節點位移,實現瞭將三維模態信息應用于廣義流固耦閤界麵條件。建立瞭艦船在規則波中的廣義水彈性運動方程,求解齣各階振動模態的主坐標。將各階彈性模態主坐標與預報位置的角變形矩陣相乘,得到角變形響應。針對某實船,分彆採用三維水彈性方法和三維剛體方法進行計算,通過對船體結構角變形響應的對比,驗證瞭三維水彈性方法的正確性,同時也證明瞭該方法在計算效率上的優勢。
침대항행중함선변형문제,채용삼유수탄성이론실현료파랑중함선적동태변형예보。통과의합불동모태하선체유한원모형적절점위이,실현료장삼유모태신식응용우엄의류고우합계면조건。건립료함선재규칙파중적엄의수탄성운동방정,구해출각계진동모태적주좌표。장각계탄성모태주좌표여예보위치적각변형구진상승,득도각변형향응。침대모실선,분별채용삼유수탄성방법화삼유강체방법진행계산,통과대선체결구각변형향응적대비,험증료삼유수탄성방법적정학성,동시야증명료해방법재계산효솔상적우세。
Aiming at the deformation problem of the navigating ship, the three dimensional (3D) hydroelastic meth?od is adopted to predict the dynamic deformation of ships in waves. Through fitting the nodes displacement of differ?ent vibration modes, the modal information of the 3D finite model is applied to the generalized interface boundary condition of fluid?structure interactions. Then, generalized hydroelastic equations of ship motion are established and the principal coordinates of different order vibration modes are solved. Furthermore, the angular deformation re?sponse could be achieved through multiplying the angular deformation matrix and the principal coordinates of differ?ent order elastic vibration modes. Take a real ship as an example, the 3D hydroelastic method and the 3D rigid method are applied to calculate the deformation response of the ship, respectively. Through comparing the results from the two methods, the correctness and high efficiency of the 3D hydroelastic method are proved.