智能系统学报
智能繫統學報
지능계통학보
CAAI TRANSACTIONS ON INTELLIGENT SYSTEMS
2015年
1期
62-67
,共6页
李俊泽%袁小芳%张振军%王耀南%王国锋
李俊澤%袁小芳%張振軍%王耀南%王國鋒
리준택%원소방%장진군%왕요남%왕국봉
小波变换%统计建模%二维GARCH模型%果蝇优化算法%图像去噪
小波變換%統計建模%二維GARCH模型%果蠅優化算法%圖像去譟
소파변환%통계건모%이유GARCH모형%과승우화산법%도상거조
wavelet transform%statistical modeling%two-dimensional GARCH model%FOA%image denoising
提出了一种基于小波系数统计模型的图像去噪方法。该方法利用二维广义自回归条件异方差(2DG-ARCH )模型对小波系数进行建模,这种小波系数模型能够更好地利用小波系数“尖峰厚尾”的分布特性和系数间的相关性等重要特性。利用基于果蝇优化算法的极大似然估计( ML Estimation based on FOA )代替传统的线性规划方法求解模型参数,提高了建模的准确性。在此基础上再采用最小均方误差估计( MMSE Estimation )对未受噪声污染的原始图像的小波系数进行估计。实验结果表明,与当前主流的去噪方法相比,该算法能更有效地去除图像中的噪声,获得更高的峰值信噪比( PSNR)和较好的视觉效果。
提齣瞭一種基于小波繫數統計模型的圖像去譟方法。該方法利用二維廣義自迴歸條件異方差(2DG-ARCH )模型對小波繫數進行建模,這種小波繫數模型能夠更好地利用小波繫數“尖峰厚尾”的分佈特性和繫數間的相關性等重要特性。利用基于果蠅優化算法的極大似然估計( ML Estimation based on FOA )代替傳統的線性規劃方法求解模型參數,提高瞭建模的準確性。在此基礎上再採用最小均方誤差估計( MMSE Estimation )對未受譟聲汙染的原始圖像的小波繫數進行估計。實驗結果錶明,與噹前主流的去譟方法相比,該算法能更有效地去除圖像中的譟聲,穫得更高的峰值信譟比( PSNR)和較好的視覺效果。
제출료일충기우소파계수통계모형적도상거조방법。해방법이용이유엄의자회귀조건이방차(2DG-ARCH )모형대소파계수진행건모,저충소파계수모형능구경호지이용소파계수“첨봉후미”적분포특성화계수간적상관성등중요특성。이용기우과승우화산법적겁대사연고계( ML Estimation based on FOA )대체전통적선성규화방법구해모형삼수,제고료건모적준학성。재차기출상재채용최소균방오차고계( MMSE Estimation )대미수조성오염적원시도상적소파계수진행고계。실험결과표명,여당전주류적거조방법상비,해산법능경유효지거제도상중적조성,획득경고적봉치신조비( PSNR)화교호적시각효과。
An image denoising method based on the statistical model for wavelet coefficients is proposed .It uses a two-dimensional Generalized Autoregressive Conditional Heteroscedasticity (2D-GARCH) model for modeling the wavelet coefficients .A novel wavelet coefficients model is also used to make better use of the important characteris -tics of wavelet coefficients such as "sharp peak and heavy tailed"marginal distribution and the dependencies be-tween the coefficients .It utilizes maximum likelihood estimation based on fruit fly optimization algorithm ( ML Esti-mation based on FOA) to estimate the model parameters instead of using traditional linear programming in order to improve the accuracy of the modeling .The minimum mean square error estimation ( MMSE Estimation ) is applied to estimating the parameters of the wavelet coefficients of the original image that is not affected by noise .Experimental results showed that compared to the present widely-used denoising methods the proposed method is more effective in image denoising , and it may achieve higher peak signal-to-noise ratio ( PSNR) and good visuality .