噪声与振动控制
譟聲與振動控製
조성여진동공제
NOISE AND VIBRATION CONTROL
2015年
1期
23-28
,共6页
声学%波叠加%辐射声功率%加肋板
聲學%波疊加%輻射聲功率%加肋闆
성학%파첩가%복사성공솔%가륵판
acoustics%wave superposition%radiation sound power%stiffened plate
波叠加原理提供了计算加肋板辐射声功率的方法。首先对结构的动力方程进行Fourier变换或者单元体积速度匹配,获得结构离散单元的体积速度。然后根据结构与介质的交界面相容性条件,建立虚拟声源强度与单元体积速度的代数方程。进而求解虚拟声源的强度,获得计算结构辐射声功率的两种方法。以求解加肋简支矩形板的声功率为例,其结果与解析法获得的结果进行了对比,表明这两种方法都同样具有较高的计算精度。相对于利用Fourier变换的方法,采用单元体积速度匹配原则的方法不需要计算结构的振动模态耦合矩阵,计算简单直接,而且行之有效。
波疊加原理提供瞭計算加肋闆輻射聲功率的方法。首先對結構的動力方程進行Fourier變換或者單元體積速度匹配,穫得結構離散單元的體積速度。然後根據結構與介質的交界麵相容性條件,建立虛擬聲源彊度與單元體積速度的代數方程。進而求解虛擬聲源的彊度,穫得計算結構輻射聲功率的兩種方法。以求解加肋簡支矩形闆的聲功率為例,其結果與解析法穫得的結果進行瞭對比,錶明這兩種方法都同樣具有較高的計算精度。相對于利用Fourier變換的方法,採用單元體積速度匹配原則的方法不需要計算結構的振動模態耦閤矩陣,計算簡單直接,而且行之有效。
파첩가원리제공료계산가륵판복사성공솔적방법。수선대결구적동력방정진행Fourier변환혹자단원체적속도필배,획득결구리산단원적체적속도。연후근거결구여개질적교계면상용성조건,건립허의성원강도여단원체적속도적대수방정。진이구해허의성원적강도,획득계산결구복사성공솔적량충방법。이구해가륵간지구형판적성공솔위례,기결과여해석법획득적결과진행료대비,표명저량충방법도동양구유교고적계산정도。상대우이용Fourier변환적방법,채용단원체적속도필배원칙적방법불수요계산결구적진동모태우합구진,계산간단직접,이차행지유효。
A method for calculating the radiation sound power of a stiffened plate was proposed using the principle of wave superposition. First of all, Fourier transform or element volume-velocity match was applied to the structural dynamic equation, and the volume velocity of the structure elements was obtained. According to the compatibility condition between the structure and the medium, a set of algebraic equations was established for calculating the virtual sound source intensity and the element volume velocity. Furthermore, the virtual sound source intensity could be used to compute the radiation sound power of the structure. Two methods were provided which can be used to compute the sound power of the stiffened plate without computing the surface pressure. As an example, the structural radiation sound power of a rectangular simply-supported baffled plate was computed. The result was compared with that of the analytical solution. It is shown that both the methods have high precision. Since the method based on the element volume velocity matching principle does not need to calculate the vibration modal coupling matrix, it is more straightforward and simple than the method using Fourier transform.