噪声与振动控制
譟聲與振動控製
조성여진동공제
NOISE AND VIBRATION CONTROL
2015年
1期
230-234
,共5页
胡常安%袁德强%王彭%杜文波
鬍常安%袁德彊%王彭%杜文波
호상안%원덕강%왕팽%두문파
振动与波%故障诊断%人工智能理论%转子%局部切空间排列算法
振動與波%故障診斷%人工智能理論%轉子%跼部切空間排列算法
진동여파%고장진단%인공지능이론%전자%국부절공간배렬산법
vibration and wave%fault diagnosis%artificial intelligence%rotor%local tangent space alignment (LTSA) algorithm
针对传统流形学习算法不具有增量学习能力;故难以处理新增数据与大规模海量数据集的问题,由此,提出一种用于机械转子故障数据集降维的增量局部切空间的排列算法(ILTSA)。该算法首先采用局部切空间排列算法对原始训练样本进行降维处理,获得其低维流形结构,然后通过增量学习算法对新增样本进行处理。得到所有数据的低维嵌入坐标,最后通过转子故障数据集验证了该方法的有效性,取得了良好的分类效果,有利于实时动态故障监测与诊断。
針對傳統流形學習算法不具有增量學習能力;故難以處理新增數據與大規模海量數據集的問題,由此,提齣一種用于機械轉子故障數據集降維的增量跼部切空間的排列算法(ILTSA)。該算法首先採用跼部切空間排列算法對原始訓練樣本進行降維處理,穫得其低維流形結構,然後通過增量學習算法對新增樣本進行處理。得到所有數據的低維嵌入坐標,最後通過轉子故障數據集驗證瞭該方法的有效性,取得瞭良好的分類效果,有利于實時動態故障鑑測與診斷。
침대전통류형학습산법불구유증량학습능력;고난이처리신증수거여대규모해량수거집적문제,유차,제출일충용우궤계전자고장수거집강유적증량국부절공간적배렬산법(ILTSA)。해산법수선채용국부절공간배렬산법대원시훈련양본진행강유처리,획득기저유류형결구,연후통과증량학습산법대신증양본진행처리。득도소유수거적저유감입좌표,최후통과전자고장수거집험증료해방법적유효성,취득료량호적분류효과,유리우실시동태고장감측여진단。
The traditional learning algorithm does not have incremental learning ability, so it is unlikely to deal with ad-ditional new data and large data sets. In this paper, an incremental local tangent space alignment (LTSA) algorithm for me-chanical rotor fault diagnosis was put forward. In this method, the LTSA algorithm was used for dimension reduction of the original training samples, and the corresponding low-dimension configuration was obtained. Then, using the incremental learning algorithm, the additional new samples were processed, and the embedded low-dimensional coordinates of the data were obtained. Finally, the rotor fault datasets verified the feasibility of the method, and a good classification effect was ob-tained.