系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
SYSTEMS ENGINEERING AND ELECTRONICS
2015年
2期
449-454
,共6页
滕炯华%徐婧林%卢隆%周三平%韩军伟
滕炯華%徐婧林%盧隆%週三平%韓軍偉
등형화%서청림%로륭%주삼평%한군위
非局部欧氏中值%Rayleigh 分布%回归模型%自适应参数%曲线拟合
非跼部歐氏中值%Rayleigh 分佈%迴歸模型%自適應參數%麯線擬閤
비국부구씨중치%Rayleigh 분포%회귀모형%자괄응삼수%곡선의합
non-local Euclidean medians%Rayleigh distribution%regression model%adaptive parameter%curve fitting
针对图像加性高斯白噪声,提出一种优化的自适应参数滤波算法。该算法以非局部欧氏中值(non-local Euclidean medians,NLEM)滤波算法为基础,根据含噪图像梯度幅值在一定噪声范围内服从 Rayleigh 分布这一特性,求得以梯度幅值和噪声标准差为自变量的二元自适应滤波参数,并将它引入到邻域的权值计算中。其次,噪声的变化影响着 e p 范数回归的选择,在一定范围内以噪声标准差为自变量对参数 p 进行多项式拟合,得到自适应 e p 范数回归。在自适应滤波参数基础上,用自适应 e p 范数回归进一步改进 NLEM 滤波算法的 e 1-范数回归。所选图像的实验结果表明,本文算法在一定噪声范围内不但获得满意的去噪效果,而且有效地减少人机交互程度。
針對圖像加性高斯白譟聲,提齣一種優化的自適應參數濾波算法。該算法以非跼部歐氏中值(non-local Euclidean medians,NLEM)濾波算法為基礎,根據含譟圖像梯度幅值在一定譟聲範圍內服從 Rayleigh 分佈這一特性,求得以梯度幅值和譟聲標準差為自變量的二元自適應濾波參數,併將它引入到鄰域的權值計算中。其次,譟聲的變化影響著 e p 範數迴歸的選擇,在一定範圍內以譟聲標準差為自變量對參數 p 進行多項式擬閤,得到自適應 e p 範數迴歸。在自適應濾波參數基礎上,用自適應 e p 範數迴歸進一步改進 NLEM 濾波算法的 e 1-範數迴歸。所選圖像的實驗結果錶明,本文算法在一定譟聲範圍內不但穫得滿意的去譟效果,而且有效地減少人機交互程度。
침대도상가성고사백조성,제출일충우화적자괄응삼수려파산법。해산법이비국부구씨중치(non-local Euclidean medians,NLEM)려파산법위기출,근거함조도상제도폭치재일정조성범위내복종 Rayleigh 분포저일특성,구득이제도폭치화조성표준차위자변량적이원자괄응려파삼수,병장타인입도린역적권치계산중。기차,조성적변화영향착 e p 범수회귀적선택,재일정범위내이조성표준차위자변량대삼수 p 진행다항식의합,득도자괄응 e p 범수회귀。재자괄응려파삼수기출상,용자괄응 e p 범수회귀진일보개진 NLEM 려파산법적 e 1-범수회귀。소선도상적실험결과표명,본문산법재일정조성범위내불단획득만의적거조효과,이차유효지감소인궤교호정도。
For additive white Gaussian noise of an image,this paper proposes an optimized adaptive parame-ter filter algorithm.Based on the non-local Euclidean medians (NLEM)algorithm,according to the property that the noise image gradient amplitude obeys Rayleigh distribution within a certain noise range,we obtain a bi-nary adaptive filter parameter by regarding gradient amplitude and noise standard deviation as independent varia-bles.The adaptive filter parameter is introduced in the weight calculation of neighbors.Furthermore,the chan-ges of the noise affect the selections of the e p norm regression.Make p used polynomial fit with noise standard deviation in a certain range,and get adaptive e p norm regression.On the basis of adaptive filter parameters,e 1 norm regression used in NLEM can be improved by using adaptive e p norm regression.It is verified that the new algorithm not only obtains satisfactory results of denoising in a certain noise range,but also reduces the degree of human-computer interaction effectively.