黑龙江大学工程学报
黑龍江大學工程學報
흑룡강대학공정학보
JOURNAL OF HEILONGJIANG HYDRAULIC ENGINEERING COLLEGE
2015年
1期
27-31
,共5页
魏国丰%国绍文%须莹%李伟%陈曦%王蕊
魏國豐%國紹文%鬚瑩%李偉%陳晞%王蕊
위국봉%국소문%수형%리위%진희%왕예
三轴光电跟踪系统%姿态稳定技术%动载体%小脑模型关节控制器%神经网络
三軸光電跟蹤繫統%姿態穩定技術%動載體%小腦模型關節控製器%神經網絡
삼축광전근종계통%자태은정기술%동재체%소뇌모형관절공제기%신경망락
three-axis photoelectric tracking system%attitude stabilization technology%motorial carrier%Cerebellar Model Articulation Controller(CMAC)%intelligent control%neural network
将小脑模型关节控制器(CMAC)神经网络应用于动载体光电稳定跟踪控制系统设计,分别构建CMAC学习算法网络和CM AC控制网络,泛化参数取4,采用δ学习算法调整网络权值,为评估所构建的CM AC网络对目标系统的逼近能力,选定一个非线性系统作为对象,以连续方波为输入信号进行仿真。仿真数据显示,输入信号发生跳变经0.15 s后输出信号的稳态误差为0。选用直流力矩电机和分辨率为767×10-6 rad的光电编码器构建动载体三轴姿态稳定控制实验装置。结果表明,构建的以CM AC神经网络为核心的控制器在此实验装置上实现的姿态稳定误差为870×10-6 rad。
將小腦模型關節控製器(CMAC)神經網絡應用于動載體光電穩定跟蹤控製繫統設計,分彆構建CMAC學習算法網絡和CM AC控製網絡,汎化參數取4,採用δ學習算法調整網絡權值,為評估所構建的CM AC網絡對目標繫統的逼近能力,選定一箇非線性繫統作為對象,以連續方波為輸入信號進行倣真。倣真數據顯示,輸入信號髮生跳變經0.15 s後輸齣信號的穩態誤差為0。選用直流力矩電機和分辨率為767×10-6 rad的光電編碼器構建動載體三軸姿態穩定控製實驗裝置。結果錶明,構建的以CM AC神經網絡為覈心的控製器在此實驗裝置上實現的姿態穩定誤差為870×10-6 rad。
장소뇌모형관절공제기(CMAC)신경망락응용우동재체광전은정근종공제계통설계,분별구건CMAC학습산법망락화CM AC공제망락,범화삼수취4,채용δ학습산법조정망락권치,위평고소구건적CM AC망락대목표계통적핍근능력,선정일개비선성계통작위대상,이련속방파위수입신호진행방진。방진수거현시,수입신호발생도변경0.15 s후수출신호적은태오차위0。선용직류력구전궤화분변솔위767×10-6 rad적광전편마기구건동재체삼축자태은정공제실험장치。결과표명,구건적이CM AC신경망락위핵심적공제기재차실험장치상실현적자태은정오차위870×10-6 rad。
The cerebellar model articulation controller (CMAC) neural network is applied to the design for photoelectric stable tracking control system of motorial carrier ,respectively constructing “CMAC network learning algorithm” and “CMAC control network” .The generalization parameter is 4 ,and the learning algorithm δis used to adjust to the network weights .In order to assess the approximation ability of the CMAC network to built a target system ,a nonlinear system is selected as the object .The input signal is continuous square wave and simulated .The simulation data shows that the input signal has changed after 0.15 seconds and the steady‐state error of the output signal is 0 .Using DC torque motor and resolution of 767 × 10-6 rad of photoelectric encoder ,it builds a three‐axis attitude stability control experimental device of motorial carrier .The result shows that controller based on CMAC neural network is constructed which can realize attitude stabilization error as 870 × 10-6 rad in this experiment device .