衡水学院学报
衡水學院學報
형수학원학보
JOURNAL OF HENGSHUI UNIVERSITY
2015年
1期
8-11
,共4页
对称区域%二重积分%奇偶性
對稱區域%二重積分%奇偶性
대칭구역%이중적분%기우성
symmetrical region%double integral%parity
当积分区域具有对称性,被积函数具有奇偶性时,可以简化二重积分的计算过程。给出并证明了积分区域关于一个坐标轴对称、关于两个坐标轴都对称、被积函数具有某种特性的二重积分计算公式,进而给出积分区域关于任意直线对称的二重积分的计算公式;举例说明了各类重积分计算公式的应用。
噹積分區域具有對稱性,被積函數具有奇偶性時,可以簡化二重積分的計算過程。給齣併證明瞭積分區域關于一箇坐標軸對稱、關于兩箇坐標軸都對稱、被積函數具有某種特性的二重積分計算公式,進而給齣積分區域關于任意直線對稱的二重積分的計算公式;舉例說明瞭各類重積分計算公式的應用。
당적분구역구유대칭성,피적함수구유기우성시,가이간화이중적분적계산과정。급출병증명료적분구역관우일개좌표축대칭、관우량개좌표축도대칭、피적함수구유모충특성적이중적분계산공식,진이급출적분구역관우임의직선대칭적이중적분적계산공식;거례설명료각류중적분계산공식적응용。
While the region of integration possesses symmetry and the integrand possesses parity, the calculation of double integral can be simplified. The author proved the computational formula of double integral when the region of integration is symmetrical about one or two coordinate axis and the integrand possesses certain properties, and based on it, gave the computational formula of double integral when the region of integration is arbitrary linear symmetrical. The author also exemplified the application of the computational formula of various multiple integrals.