山东大学学报(工学版)
山東大學學報(工學版)
산동대학학보(공학판)
JOURNAL OF SHANDONG UNIVERSITY(ENGINEERING SCIENCE)
2015年
1期
30-36
,共7页
杨隆浩%傅仰耿%巩晓婷
楊隆浩%傅仰耿%鞏曉婷
양륭호%부앙경%공효정
置信规则库%参数学习%差分进化算法%消息传递接口%并行算法%集群系统%输油管道检漏
置信規則庫%參數學習%差分進化算法%消息傳遞接口%併行算法%集群繫統%輸油管道檢漏
치신규칙고%삼수학습%차분진화산법%소식전체접구%병행산법%집군계통%수유관도검루
belief rule base%parameter learning%differential evolution algorithm%message passing interface%parallel al-gorithm%cluster system%pipeline leak detection
为解决置信规则库中现有参数学习方法主要是串行算法且不适用于求解大数据下参数优化模型的问题,结合群智能算法中的差分进化算法和集群系统中分布式方法,提出了基于消息传递接口的并行参数学习方法。以输油管道检漏问题为例,对比分析了本算法与现有参数学习方法在收敛时的误差,并在不同结点数的集群系统中分析了本算法的加速比和效率。实验结果表明,并行的参数学习方法是有效可行的。
為解決置信規則庫中現有參數學習方法主要是串行算法且不適用于求解大數據下參數優化模型的問題,結閤群智能算法中的差分進化算法和集群繫統中分佈式方法,提齣瞭基于消息傳遞接口的併行參數學習方法。以輸油管道檢漏問題為例,對比分析瞭本算法與現有參數學習方法在收斂時的誤差,併在不同結點數的集群繫統中分析瞭本算法的加速比和效率。實驗結果錶明,併行的參數學習方法是有效可行的。
위해결치신규칙고중현유삼수학습방법주요시천행산법차불괄용우구해대수거하삼수우화모형적문제,결합군지능산법중적차분진화산법화집군계통중분포식방법,제출료기우소식전체접구적병행삼수학습방법。이수유관도검루문제위례,대비분석료본산법여현유삼수학습방법재수렴시적오차,병재불동결점수적집군계통중분석료본산법적가속비화효솔。실험결과표명,병행적삼수학습방법시유효가행적。
To solve the problem of the existing parameter learning approaches for Belief Rule Base (BRB)were mainly serial algorithms,and those approaches were unsuitable for handling parameter optimization model under the big data. The differential evolution algorithm of swarm intelligence algorithms and the distributed method of cluster systems were introduced to the BRB,and then a parallel parameter learning approach using message passing interface was proposed. A numeric example of the pipeline leak detection problem was given.The new approach was compared with the existing parameter approaches in terms of the convergence error,the speedup ratio and the efficiency of parallel algorithm with different nodes of the cluster system.The experimental results showed that the approach was feasibilitiness and effective-ness.