农业工程学报
農業工程學報
농업공정학보
2015年
3期
77-86
,共10页
李继宇%周志艳%兰玉彬%胡炼%臧英%刘爱民%罗锡文%张铁民
李繼宇%週誌豔%蘭玉彬%鬍煉%臧英%劉愛民%囉錫文%張鐵民
리계우%주지염%란옥빈%호련%장영%류애민%라석문%장철민
无人机%模型%风%试验%旋翼式%水稻冠层%数据拟合%风场模型
無人機%模型%風%試驗%鏇翼式%水稻冠層%數據擬閤%風場模型
무인궤%모형%풍%시험%선익식%수도관층%수거의합%풍장모형
unmanned aerial vehicles%models%wind%experiments%rotors%rice canopy%data fitting%wind field model
为提高杂交水稻机械化种植效率,扩大父母本种植行宽比,采用旋翼式无人机进行辅助授粉作业。旋翼风场是由无人机旋翼旋转推动空气进行流动作用在作物冠层而形成。风场的覆盖宽度、风场内各方向风速的大小以及风场的分布规律将会直接影响到农用无人机田间作业的效果。该文结合无人机的飞行参数使用风速参数采集系统获取18旋翼无人机的授粉作业风速,其中对于矩阵数据(100×60)的行数据和列数据的意义进行了充分的讨论,总结了行、列数据的特点并结合试验实际情况对数据进行处理。发现3向风速数据的时序变化规律保持有一致性,X 向风速在最大值时刻之前其平均值要大于Y向与Z向风速;X向、Y向风速值时序曲线之间的形状特征差异小于X向与Z向或者Y向与Z向之间的形状特征差异。而从3向风速值的空间变化分布情况也可看出无人机飞行轨迹与传感器行阵列交汇点处(9#~11#)所采集风速平均值最大,考虑到测量误差值,随着采样点距离飞行轨迹越远,采样点对应风速值衰减越多。综合二维风场数据可知3向风场宽度对比结果为Y向>X向>Z向。在此基础上,采用高斯法拟合等方式对行数据及列数据进行计算,通过对比各统计项的参数,拟合列数据建立风速数据与时间关系的5阶指数函数模型;拟合行数据作为风速数据与采样点分布距离关系的6阶指数函数模型。利用矩阵变换基于行、列数据模型最终建立水稻冠层处无人机旋翼X向二维风场理想模型,且由模型图中可发现无人机沿冠层飞行时旋翼X向风场的分布形状存在“陡壁”效应,即无人机旋翼下风速达到最大值,前向风速增大率要明显高于后向减小率,整个风场“陡壁”沿无人机飞行方向左右对称。研究将为无人机辅助授粉通过改变风场实现新的作业方法提供参考。
為提高雜交水稻機械化種植效率,擴大父母本種植行寬比,採用鏇翼式無人機進行輔助授粉作業。鏇翼風場是由無人機鏇翼鏇轉推動空氣進行流動作用在作物冠層而形成。風場的覆蓋寬度、風場內各方嚮風速的大小以及風場的分佈規律將會直接影響到農用無人機田間作業的效果。該文結閤無人機的飛行參數使用風速參數採集繫統穫取18鏇翼無人機的授粉作業風速,其中對于矩陣數據(100×60)的行數據和列數據的意義進行瞭充分的討論,總結瞭行、列數據的特點併結閤試驗實際情況對數據進行處理。髮現3嚮風速數據的時序變化規律保持有一緻性,X 嚮風速在最大值時刻之前其平均值要大于Y嚮與Z嚮風速;X嚮、Y嚮風速值時序麯線之間的形狀特徵差異小于X嚮與Z嚮或者Y嚮與Z嚮之間的形狀特徵差異。而從3嚮風速值的空間變化分佈情況也可看齣無人機飛行軌跡與傳感器行陣列交彙點處(9#~11#)所採集風速平均值最大,攷慮到測量誤差值,隨著採樣點距離飛行軌跡越遠,採樣點對應風速值衰減越多。綜閤二維風場數據可知3嚮風場寬度對比結果為Y嚮>X嚮>Z嚮。在此基礎上,採用高斯法擬閤等方式對行數據及列數據進行計算,通過對比各統計項的參數,擬閤列數據建立風速數據與時間關繫的5階指數函數模型;擬閤行數據作為風速數據與採樣點分佈距離關繫的6階指數函數模型。利用矩陣變換基于行、列數據模型最終建立水稻冠層處無人機鏇翼X嚮二維風場理想模型,且由模型圖中可髮現無人機沿冠層飛行時鏇翼X嚮風場的分佈形狀存在“陡壁”效應,即無人機鏇翼下風速達到最大值,前嚮風速增大率要明顯高于後嚮減小率,整箇風場“陡壁”沿無人機飛行方嚮左右對稱。研究將為無人機輔助授粉通過改變風場實現新的作業方法提供參攷。
위제고잡교수도궤계화충식효솔,확대부모본충식행관비,채용선익식무인궤진행보조수분작업。선익풍장시유무인궤선익선전추동공기진행류동작용재작물관층이형성。풍장적복개관도、풍장내각방향풍속적대소이급풍장적분포규률장회직접영향도농용무인궤전간작업적효과。해문결합무인궤적비행삼수사용풍속삼수채집계통획취18선익무인궤적수분작업풍속,기중대우구진수거(100×60)적행수거화렬수거적의의진행료충분적토론,총결료행、렬수거적특점병결합시험실제정황대수거진행처리。발현3향풍속수거적시서변화규률보지유일치성,X 향풍속재최대치시각지전기평균치요대우Y향여Z향풍속;X향、Y향풍속치시서곡선지간적형상특정차이소우X향여Z향혹자Y향여Z향지간적형상특정차이。이종3향풍속치적공간변화분포정황야가간출무인궤비행궤적여전감기행진렬교회점처(9#~11#)소채집풍속평균치최대,고필도측량오차치,수착채양점거리비행궤적월원,채양점대응풍속치쇠감월다。종합이유풍장수거가지3향풍장관도대비결과위Y향>X향>Z향。재차기출상,채용고사법의합등방식대행수거급렬수거진행계산,통과대비각통계항적삼수,의합렬수거건립풍속수거여시간관계적5계지수함수모형;의합행수거작위풍속수거여채양점분포거리관계적6계지수함수모형。이용구진변환기우행、렬수거모형최종건립수도관층처무인궤선익X향이유풍장이상모형,차유모형도중가발현무인궤연관층비행시선익X향풍장적분포형상존재“두벽”효응,즉무인궤선익하풍속체도최대치,전향풍속증대솔요명현고우후향감소솔,정개풍장“두벽”연무인궤비행방향좌우대칭。연구장위무인궤보조수분통과개변풍장실현신적작업방법제공삼고。
In order to improve the efficiency of hybrid rice planting mechanization and expanding the row width ratio of the parents planting, rotary-wing UAV (unmanned aerial vehicle) is used to the supplementary pollination work. Rotor wind is driven by UAV rotor rotating, which propels the air flow in crop canopy and forms wind field. Cover width of wind field, wind speed in 3 directions and distribution of wind field will directly affect the agricultural UAV’s field effect. In this paper, based on the UAV flight parameters, wind speed acquisition system was used to collect pollination’s wind speed of 18-rotor UAV; for wind data, the significance of the row and column data of matrix data (100×60) was fully discussed, and the characteristics of row and column data were summarized and it was processed with the field test. The temporal change law of the wind speed data in three directions has the characteristics of consistency, and the average value ofX direction is greater thanY andZ direction before the maximum moment; the difference of the wind speed value sequence curve betweenX andY is less than the differences betweenX andZ orY andZ. The space distribution of wind speed values in 3 directions suggests that the maximum average value of collected wind speed occurs in the intersection of UAV flight path and a sensor array (9#-11#); considering the error of measurement value, the farther the distance between the sample point and flight path, the more the attenuation of corresponding wind speed value of sampling points. Summarizing two-dimensional wind field data, it is found that the result of the wind field widths in 3 directions isY>X>Z. On this basis, the method of Gaussian curve fitting is used to calculate the row data and column data; by comparing the statistical parameters, column data is fitted to establish the five-order exponent function model of the relationship between wind speed data and time, and row data is fitted to establish the six-order exponent function model of the relationship between wind speed data and sample point. The method of matrix transformation is used to eventually establish the ideal 2-dimensional wind field model in UAV rotorX direction in rice canopy based on row and column data models. And by the model diagram, it is found that "steep" effect exists in the distribution shape of wind field inX direction, which means the maximum wind speed is below the rotor drones, the increasing rate of the wind speed in forward direction is significantly higher than the reducing rate of backward direction, and the wind field "steep" presents bilateral symmetry along the UAV flight direction. "Steep" effect and the model parameters are used to clarify the shape of the distribution of UAV rotorcraft wind field in rice canopy plane. Then we can study how to use independent air source or auxiliary device to change the existing wind field distribution shape to improve pollination effect. The new method provides the theoretical foundation for the UAV pollination work. It must be noted that the model is only a single sample from a single-direction data, and only the ideal basic model of wind field distribution of UAV rotorcraft in the canopy, and the further researches are needed for one-direction model of the UAV rotorcraft wind field.