电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2015年
3期
516-521
,共6页
黄宏图%毕笃彦%查宇飞%高山%覃兵
黃宏圖%畢篤彥%查宇飛%高山%覃兵
황굉도%필독언%사우비%고산%담병
计算机视觉%视频跟踪%笛卡尔乘积%稀疏编码%支持向量回归机%岭回归
計算機視覺%視頻跟蹤%笛卡爾乘積%稀疏編碼%支持嚮量迴歸機%嶺迴歸
계산궤시각%시빈근종%적잡이승적%희소편마%지지향량회귀궤%령회귀
Computer vision%Visual tracking%Cartesian product%Sparse coding%Support vector machine regression%Ridge regression
为了提高基于稀疏编码的视频目标跟踪算法的鲁棒性,该文将原始稀疏编码问题分解为两个子稀疏编码问题,在大大增加字典原子个数的同时,降低了稀疏性求解过程的计算量。并且为了减少?1范数最小化的计算次数,利用基于岭回归的重构误差先对候选目标进行粗估计,而后选取重构误差较小的若干个粒子求解其在两个子字典下的稀疏表示,最后将目标的高维稀疏表示代入事先训练好的分类器,选取分类器响应最大的候选位置作为目标的跟踪位置。实验结果表明由于笛卡尔乘积字典的应用使得算法的鲁棒性得到一定程度的提高。
為瞭提高基于稀疏編碼的視頻目標跟蹤算法的魯棒性,該文將原始稀疏編碼問題分解為兩箇子稀疏編碼問題,在大大增加字典原子箇數的同時,降低瞭稀疏性求解過程的計算量。併且為瞭減少?1範數最小化的計算次數,利用基于嶺迴歸的重構誤差先對候選目標進行粗估計,而後選取重構誤差較小的若榦箇粒子求解其在兩箇子字典下的稀疏錶示,最後將目標的高維稀疏錶示代入事先訓練好的分類器,選取分類器響應最大的候選位置作為目標的跟蹤位置。實驗結果錶明由于笛卡爾乘積字典的應用使得算法的魯棒性得到一定程度的提高。
위료제고기우희소편마적시빈목표근종산법적로봉성,해문장원시희소편마문제분해위량개자희소편마문제,재대대증가자전원자개수적동시,강저료희소성구해과정적계산량。병차위료감소?1범수최소화적계산차수,이용기우령회귀적중구오차선대후선목표진행조고계,이후선취중구오차교소적약간개입자구해기재량개자자전하적희소표시,최후장목표적고유희소표시대입사선훈련호적분류기,선취분류기향응최대적후선위치작위목표적근종위치。실험결과표명유우적잡이승적자전적응용사득산법적로봉성득도일정정도적제고。
In order to improve the robustness of the visual tracking algorithm based on sparse coding, the original sparse coding problem is decomposed into two sub sparse coding problems. And the size of the codebook is intensively increased while the computational cost is decreased. Furthermore, in order to decrease the number of the1?-norm minimization, ridge regression is employed to exclude the intensive outlying particles via the reconstruction error. And the sparse representation of the particles with small reconstruction error is computed on the two subcodebooks. The high-dimension sparse representation is put into the classifier and the candidate with the biggest response is recognized as the target. The experiment results demonstrate that the robustness of the proposed algorithm is improved due to the employed Cartesian product of subcodebooks.