电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2015年
3期
619-624
,共6页
张晖%刘永信%张杰%纪永刚%郑志强
張暉%劉永信%張傑%紀永剛%鄭誌彊
장휘%류영신%장걸%기영강%정지강
高频地波雷达%自动识别系统%数据关联%最优关联%JVC(Jonker-Volgenant-Castanon)算法
高頻地波雷達%自動識彆繫統%數據關聯%最優關聯%JVC(Jonker-Volgenant-Castanon)算法
고빈지파뢰체%자동식별계통%수거관련%최우관련%JVC(Jonker-Volgenant-Castanon)산법
High Frequency Surface Wave Radar (HFSWR)%Automatic Identification System (AIS)%Data association%Optimal association%Jonker-Volgenant-Castanon (JVC) algorithm
为了提高海洋探测精度和范围,针对高频地波雷达(HFSWR)和自动识别系统(AIS)目标点迹的融合利用问题,该文提出一种基于 JVC(Jonker-Volgenant-Castanon)的点迹分状态全局最优关联算法。首先,通过判断高频地波雷达和 AIS 点迹的径向速度,将点迹分为准静态目标和动态目标。接着,选取径向速度和点迹间的球面距离为特征参数,对不同状态下目标点迹分别进行径向速度和位置间球面距离粗关联。最后,使用相对距离比的平均值进行关联效果的评价,通过选择合适的关联门限参数,使用JVC算法实现高频地波雷达和AIS的点迹最优关联。实验结果表明:该算法在关联相同点迹对数的情况下,关联精度高于最近邻(NN)算法和Munkres关联法,关联用时少于最近邻算法和Munkres关联法。通过近3年内3组不同时刻实测目标点迹的验证,该算法可以满足关联的实用性和实时性要求。
為瞭提高海洋探測精度和範圍,針對高頻地波雷達(HFSWR)和自動識彆繫統(AIS)目標點跡的融閤利用問題,該文提齣一種基于 JVC(Jonker-Volgenant-Castanon)的點跡分狀態全跼最優關聯算法。首先,通過判斷高頻地波雷達和 AIS 點跡的徑嚮速度,將點跡分為準靜態目標和動態目標。接著,選取徑嚮速度和點跡間的毬麵距離為特徵參數,對不同狀態下目標點跡分彆進行徑嚮速度和位置間毬麵距離粗關聯。最後,使用相對距離比的平均值進行關聯效果的評價,通過選擇閤適的關聯門限參數,使用JVC算法實現高頻地波雷達和AIS的點跡最優關聯。實驗結果錶明:該算法在關聯相同點跡對數的情況下,關聯精度高于最近鄰(NN)算法和Munkres關聯法,關聯用時少于最近鄰算法和Munkres關聯法。通過近3年內3組不同時刻實測目標點跡的驗證,該算法可以滿足關聯的實用性和實時性要求。
위료제고해양탐측정도화범위,침대고빈지파뢰체(HFSWR)화자동식별계통(AIS)목표점적적융합이용문제,해문제출일충기우 JVC(Jonker-Volgenant-Castanon)적점적분상태전국최우관련산법。수선,통과판단고빈지파뢰체화 AIS 점적적경향속도,장점적분위준정태목표화동태목표。접착,선취경향속도화점적간적구면거리위특정삼수,대불동상태하목표점적분별진행경향속도화위치간구면거리조관련。최후,사용상대거리비적평균치진행관련효과적평개,통과선택합괄적관련문한삼수,사용JVC산법실현고빈지파뢰체화AIS적점적최우관련。실험결과표명:해산법재관련상동점적대수적정황하,관련정도고우최근린(NN)산법화Munkres관련법,관련용시소우최근린산법화Munkres관련법。통과근3년내3조불동시각실측목표점적적험증,해산법가이만족관련적실용성화실시성요구。
In order to solve the problem that of High Frequency Surface Wave Radar (HFSWR) and Automatic Identification System (AIS) target point tracks fusion, a point tracks association algorithm using Jonker- Volgenant-Castanon (JVC) global optimal matching for different status is proposed. Firstly, the HFSWR and AIS target point tracks are divided into the quasi-static and dynamic data by the radial velocity. Then the radial velocity and spherical distance are selected as the feature parameters, and the different status data are respectively pre-associated by the radial velocity and spherical distance. Finally, the average of relative distance ratio is used to evaluate the effect of association. According to the selection of threshold parameter, the HFSWR and AIS point tracks are optimal associated with the JVC algorithm. The experimental results indicate that the proposed algorithm, in the condition of equal number point tracks associated, is superior to the Nearest Neighbor (NN) algorithm and Munkres association algorithm in the association accuracy, and the associate time is less than the NN algorithm and Munkres association. Moreover, three different time data gained from the target traits measured in nearly three years demonstrate that the feasibility and real-time of the proposed method.